scholarly journals Improved FRT control scheme for DFIG wind turbine connected to a weak grid

Author(s):  
S. Abulanwar ◽  
Zhe Chen ◽  
F. Iov
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4225
Author(s):  
Chengbi Zeng ◽  
Sudan Li ◽  
Hanwen Wang ◽  
Hong Miao

Repetitive control (RC) is gradually used in inverters tied with weak grid. To achieve the zero steady-state error tracking of inverter current and compensate the harmonic distortion caused by frequency fluctuation, a frequency adaptive (FA) control scheme for LCL-type inverter connected with weak grid is proposed. This scheme adopts a proportional resonance (PR) controller in parallel with RC (PRRC) to overcome the disadvantages caused by RC inherent one-cycle time delay. A fractional delay (FD) filter based on the Newton structure is proposed to approximate the fraction item of fs/f, where fs and f are sample frequency and grid frequency, respectively. The structure of the proposed FD filter is relatively simple; moreover, coefficients of the filter maintain constant so as not to need online tuning even when grid frequency fluctuates, which decreases the computational burden considerably. The feasibility and effectiveness of the proposed FA control scheme, named as Newton-FAPRRC, are all verified by the simulation and experimental results.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 518
Author(s):  
Xiangwu Yan ◽  
Linlin Yang ◽  
Tiecheng Li

With the increasing penetration level of wind turbine generators (WTGs) integrated into the power system, the WTGs are enforced to aid network and fulfill the low voltage ride through (LVRT) requirements during faults. To enhance LVRT capability of permanent magnet synchronous generator (PMSG)-based WTG connected to the grid, this paper presents a novel coordinated control scheme named overspeed-while-storing control for PMSG-based WTG. The proposed control scheme purely regulates the rotor speed to reduce the input power of the machine-side converter (MSC) during slight voltage sags. Contrarily, when the severe voltage sag occurs, the coordinated control scheme sets the rotor speed at the upper-limit to decrease the input power of the MSC at the greatest extent, while the surplus power is absorbed by the supercapacitor energy storage (SCES) so as to reduce its maximum capacity. Moreover, the specific capacity configuration scheme of SCES is detailed in this paper. The effectiveness of the overspeed-while-storing control in enhancing the LVRT capability is validated under different levels of voltage sags and different fault types in MATLAB/Simulink.


2018 ◽  
Vol 3 (2) ◽  
pp. 615-638 ◽  
Author(s):  
Sebastiaan Paul Mulders ◽  
Niels Frederik Boudewijn Diepeveen ◽  
Jan-Willem van Wingerden

Abstract. The business case for compact hydraulic wind turbine drivetrains is becoming ever stronger, as offshore wind turbines are getting larger in terms of size and power output. Hydraulic transmissions are generally employed in high-load systems and form an opportunity for application in multi-megawatt turbines. The Delft Offshore Turbine (DOT) is a hydraulic wind turbine concept replacing conventional drivetrain components with a single seawater pump. Pressurized seawater is directed to a combined Pelton turbine connected to an electrical generator on a central multi-megawatt electricity generation platform. This paper presents the control design, implementation, and evaluation for an intermediate version of the ideal DOT concept: an in-field 500 kW hydraulic wind turbine. It is shown that the overall drivetrain efficiency and controllability are increased by operating the rotor at maximum rotor torque in the below-rated region using a passive torque control strategy. An active valve control scheme is employed and evaluated in near-rated conditions.


Author(s):  
Sayyed Ali Akbar Shahriari ◽  
Mohammad Mohammadi ◽  
Mahdi Raoofat

Purpose The purpose of this study is to propose a control scheme based on state estimation algorithm to improve zero or low-voltage ride-through capability of permanent magnet synchronous generator (PMSG) wind turbine. Design/methodology/approach Based on the updated grid codes, during and after faults, it is necessary to ensure wind energy generation in the network. PMSG is a type of wind energy technology that is growing rapidly in the network. The control scheme based on extended Kalman filter (EKF) is proposed to improve the low voltage ride-through (LVRT) capability of the PMSG. In the control scheme, because the state estimation algorithm is applied, the requirement of DC link voltage measurement device and generator speed sensor is removed. Furthermore, by applying this technique, the extent of possible noise on measurement tools is reduced. Findings In the proposed control scheme, zero or low-voltage ride-through capability of PMSG is enhanced. Furthermore, the requirement of DC link voltage measurement device and generator speed sensor is removed and the amount of possible noise on the measurement tools is minimized. To evaluate the ability of the proposed method, four different cases, including short and long duration short circuit fault close to PMSG in the presence and absence of measurement noise are studied. The results confirm the superiority of the proposed method. Originality/value This study introduces EKF to enhance LVRT capability of a PMSG wind turbine.


2019 ◽  
Vol 9 (21) ◽  
pp. 4695 ◽  
Author(s):  
Esmaeil Ebrahimzadeh ◽  
Frede Blaabjerg ◽  
Torsten Lund ◽  
John Godsk Nielsen ◽  
Philip Carne Kjær

It is important to develop modelling tools to predict unstable situations resulting from the interactions between the wind power plant and the weak power system. This paper presents a unified methodology to model and analyse a wind power plant connected to weak grids in the frequency-domain by considering the dynamics of the phase lock loop (PLL) and controller delays, which have been neglected in most of the previous research into modelling of wind power plants to simplify modelling. The presented approach combines both dq and positive/negative sequence domain modelling, where a single wind turbine is modelled in the dq domain but the whole wind power plant connected to the weak grid is analysed in the positive/negative sequence domain. As the proposed modelling of the wind power plant is systematic and modular and based on the decoupled positive/negative sequence impedances, the application of the proposed methodology is relevant for transmission system operators (TSOs) to assess stability easily with a very low compactional burden. In addition, as the analytical dq impedance models of the single wind turbine are provided, the proposed methodology is an optimization design tool permitting wind turbine manufacturers to tune their converter control. As a case study, a 108 MW wind power plant connected to a weak grid was used to study its sensitivity to variations in network short-circuit level, X/R ratio and line series capacitor compensation (Xc/Xg).


Sign in / Sign up

Export Citation Format

Share Document