Modeling of Three-limb Core-type Power Transformer No-load Closing Excitation Inrush Current

Author(s):  
Honghua Xu ◽  
Yong Li ◽  
Hongzhong Ma ◽  
Chunning Wang ◽  
Shoulong Chen ◽  
...  
2020 ◽  
Vol 10 (10) ◽  
pp. 20-32
Author(s):  
Aleksey A. KUVSHINOV ◽  
◽  
Vera V. VAKHNINA ◽  
Aleksey N. CHERNENKO ◽  
◽  
...  

The mathematical model of a shell-core power transformer’s magnetization branch is substantiated. By using the model, analytical expressions for the magnetizing current instantaneous values under the conditions of geomagnetic disturbances can be obtained. Quantitative assessments of the magnetizing inrush current amplitudes and durations versus the geomagnetic disturbance intensity are obtained. The dynamics of the power transformer magnetic system saturation transient and changes in the magnetization inrush current amplitudes and durations after a sudden occurrence of geomagnetic disturbances are shown. The error of estimating the magnetizing inrush current amplitudes under geomagnetic disturbances is determined based on comparison with experimental data.


Author(s):  
Arunesh Kumar Singh ◽  
Abhinav Saxena ◽  
Nathuni Roy ◽  
Umakanta Choudhury

In this paper, performance analysis of power system network is carried out by injecting the inter-turn fault at the power transformer. The injection of inter-turn fault generates the inrush current in the network. The power system network consists of transformer, current transformer, potential transformer, circuit breaker, isolator, resistance, inductance, loads, and generating source. The fault detection and termination related to inrush current has some drawbacks and limitations such as slow convergence rate, less stability and more distortion with the existing methods. These drawbacks motivate the researchers to overcome the drawbacks with new proposed methods using wavelet transformation with sample data control and fuzzy logic controller. The wavelet transformation is used to diagnose the fault type but contribute lesser for fault termination; due to that, sample data of different signals are collected at different frequencies. Further, the analysis of collected sample data is assessed by using Z-transformation and fuzzy logic controller for fault termination. The stability, total harmonic distortion and convergence rate of collected sample data among all three methods (wavelet transformation, Z-transformation and fuzzy logic controller) are compared for fault termination by using linear regression analysis. The complete performance of fault diagnosis along with fault termination has been analyzed on Simulink. It is observed that after fault injection at power transformer, fault recovers faster under fuzzy logic controller in comparison with Z-transformation followed by wavelet transformation due to higher stability, less total harmonic distortion and faster convergence.


This paper presents a new innovative algorithm for Numerical Differential Relay design of transformer. Fault information is critical for operating and maintaining power networks. This algorithm provides accurate performance for transformer by which is independent of system conditions such as: External fault, Inrush current, CT saturation. Locating transformer faults quickly and accurately is very important for economy, safety and reliability point of view. Both fault-detection and protection indices are derived by using Numerical Differential Relay algorithm design of transformer. The embedded based differential and operating current measurement device is called numerical differential relay is among the most important development in the field of instantaneous fault operation. Numerical relay provides measurement of differential current and operating current at power transformer above 5MVA in substation. Simulation studies are carried out using MATLAB Software show that the proposed scheme provides a high accuracy and fast relay response in internal fault conditions. Current transformers form an important part of protective systems. Ideal Current Transformers (CTs) are expected to reflect the primary current faithfully on the secondary side. Under conditions the CT saturates, and hence it cannot reproduce the primary current faithfully. This paper deals with simulation methods for determining CT performance under different factor. A Simulink model has been developed to observe CT response under steady state w.r.t Burden, Turns ratio, Asymmetrical current, Hysteresis conditions. Thus, it is now possible to evaluate the CT performance under these factors


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4616
Author(s):  
Chen Wei ◽  
Xianqiang Li ◽  
Ming Yang ◽  
Zhiyuan Ma ◽  
Hui Hou

The remanence (residual flux) in the core of power transformers needs to be determined in advance to eliminate the inrush current during the process of re-energization. In this paper, a novel method is proposed to determine the residual flux based on the relationship between residual flux and the measured magnetizing inductance. The paper shows physical, numerical, and analytical explanations on the phenomenon that the magnetizing inductance decreases with the increase of residual flux under low excitation. Numerical simulations are performed by EMTP (Electro-Magnetic Transient Program) on a 1 kVA power transformer under different amounts of residual flux. The inductance–remanence curves are nearly the same when testing current changes. Laboratory experiments conducted on the same transformer are in line with the numerical simulations. Furthermore, numerical simulation results on a 240 MVA are reported to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document