On the use of characteristic modes to describe patch antenna performance

Author(s):  
M. Cabedo-Fabres ◽  
E. Antonio-Daviu ◽  
M. Ferrando-Bataller ◽  
A. Valero-Nogueira
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed Amin Rabah ◽  
Bekhti Mohammed

Purpose The present work aims to analyze the performance of a newly designed graphene-based patch antenna by varying the chemical potential in graphene sheet, using the CST Microwave Studio ® software. This study mainly seeks to discuss and assess the advantage of using graphene, instead of copper, as the radiating patch. It should be noted that graphene is a new material that possesses unique properties. Its parameters are optimized for the purpose of introducing it in satellite technology. Design/methodology/approach The use of graphene as a radiating patch of space technology applications, where a polygonal graphene patch antenna element is designed by the CST Microwave Studio ® software with Taconic RF-41 substrate to resonate in the satellite bands. Findings Analysis of a graphene patch sheet by a variation in the chemical potential to ensure operation in a space environment. Originality/value The increase in the chemical potential for a graphene patch antenna has shown a prominent increase in the values of the gain. A new contribution, by the combination of the antenna performance improvement techniques and the use of graphene as a radiating patch of space technology applications.


Elliptical Micro-strip Patch Antenna (EMPA) has been emerged as a peculiar and significant category among the different shaped micro-strip patch antennas because of its circular polarization and dual-resonant frequency features with a single feed. Elliptical and its derived shapes such as semielliptical, half-elliptical, slotted-elliptical and elliptical ring are found to be particularly instrumental for bandwidth enhancement and these antennas find great applications in Ultra Wide Band (UWB) and Super Wide Band (SWB) communications. Compared to antennas with circular or rectangular shapes, the design of EMPA is a research area of high potential as there is higher flexibility in its design due to more degrees of freedom. The reported literature in the field of EMPA is very less and there is ample scope for new researchers to work on. This review paper is an attempt to summarize and critically assess the-state-of-the-art design techniques as reported in literature and understand their effects on performance of elliptical patch antenna for suggesting new research fronts in the field of EMPA.


2020 ◽  
Author(s):  
Gholam Aghashirin ◽  
Hoda S. Abdel-Aty-Zohdy ◽  
Mohamed A. Zohdy ◽  
Darrell Schmidt ◽  
Adam Timmons

2021 ◽  
Vol 10 (4) ◽  
pp. 2055-2061
Author(s):  
Rasha Mahdi Salih ◽  
Ali Khalid Jassim

This work builds a metamaterial (MTM) superstrate loaded on a patch of microstrip antenna for wireless communications. The MTM superstrate is made up of four G-shaped resonators on FR-4 substrate with a relative permittivity of 4.4 and has a total area of (8×16) mm2, and is higher than the patch. The MTM superstrate increases antenna gain while also raising the input reflection coefficient. When it is 9 mm above the patch, the gain increased from 3.28 dB to 6.02 dB, and when it is 7 mm above the patch, the input reflection coefficient was enhanced from -31.217 dB to -45.8 dB. When the MTM superstrate loaded antenna was compared to the traditional unloaded antenna, it was discovered that metamaterials have a lot of potential for improving antenna performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Stelios A. Mitilineos ◽  
Symeon K. Symeonidis ◽  
Ioannis B. Mpatsis ◽  
Dimitrios Iliopoulos ◽  
Georgios S. Kliros ◽  
...  

Conformal antennas and antenna arrays (arrays) have become necessary for vehicular communications where a high degree of aerodynamic drag reduction is needed, like in avionics and ships. However, the necessity to conform to a predefined shape (e.g., of an aircraft’s nose) directly affects antenna performance since it imposes strict constraints to the antenna array’s shape, element spacing, relative signal phase, and so forth. Thereupon, it is necessary to investigate counterintuitive and arbitrary antenna shapes in order to compensate for these constraints. Since there does not exist any available theoretical frame for designing and developing arbitrary-shape antennas in a straightforward manner, we have developed a platform combining a genetic algorithm-based design, optimization suite, and an electromagnetic simulator for designing patch antennas with a shape that is not a priori known (the genetic algorithm optimizes the shape of the patch antenna). The proposed platform is further enhanced by the ability to design and optimize antenna arrays and is intended to be used for the design of a series of antennas including conformal antennas for shipping applications. The flexibility and performance of the proposed platform are demonstrated herein via the design of a high-performance GPS patch antenna.


Sign in / Sign up

Export Citation Format

Share Document