scholarly journals Design Techniques for Elliptical Micro-Strip Patch Antenna and Their Effects on Antenna Performance

Elliptical Micro-strip Patch Antenna (EMPA) has been emerged as a peculiar and significant category among the different shaped micro-strip patch antennas because of its circular polarization and dual-resonant frequency features with a single feed. Elliptical and its derived shapes such as semielliptical, half-elliptical, slotted-elliptical and elliptical ring are found to be particularly instrumental for bandwidth enhancement and these antennas find great applications in Ultra Wide Band (UWB) and Super Wide Band (SWB) communications. Compared to antennas with circular or rectangular shapes, the design of EMPA is a research area of high potential as there is higher flexibility in its design due to more degrees of freedom. The reported literature in the field of EMPA is very less and there is ample scope for new researchers to work on. This review paper is an attempt to summarize and critically assess the-state-of-the-art design techniques as reported in literature and understand their effects on performance of elliptical patch antenna for suggesting new research fronts in the field of EMPA.

Author(s):  
Ali Daliri ◽  
Chun H. Wang ◽  
Sabu John ◽  
Amir Galehdar ◽  
Wayne S. T. Rowe ◽  
...  

In this paper, a new design for microstrip patch antenna strain sensors is proposed. The new antenna sensor works based on the meandered microstrip patch antennas. It is threefold more sensitive than previously proposed circular microstrip patch antenna strain sensors. Also, the overall physical dimension of the new antenna sensor is reduced by the factor of five. The current sensor is able to detect strain in all directions. In order to design the antenna sensor, two available commercial FEM software packages ANSYS™ and HFSS™ are used. Both experimental and FEM results corroborate the multidirectional feature of the new antenna sensor. Also, the effect of the hole size in the structure (for coaxial connection to the antenna) on the antenna performance has been studied. Based on the results obtained, the antenna sensor can be recommended for use in structural health monitoring for strain-based damage detection in aerospace structures.


Author(s):  
Abdelheq Boukarkar ◽  
Rachdi Satouh

Abstract We propose simple designs of compact patch antennas with bandwidth enhancement. Firstly, an inverted “L” strip is loaded onto the corner of one radiating patch edge to create an additional resonant mode which can be combined with that one of the conventional patch to enhance the operating bandwidth. Secondly, the “L” strip is replaced by inverted “T” strip to improve further the bandwidth by creating two adjustable resonant modes. The two proposed patch antennas have the particularity of enhancing the bandwidth significantly without increasing their profile and their overall sizes. Two antenna prototypes are fabricated and tested. Measurements reveal that the patch antenna loaded with “L” strip has stable radiation characteristics with 5.2 times enhancement in the relative bandwidth compared with a conventional patch antenna. The antenna loaded with inverted “T” strip has wider bandwidth (6.25 times wider than the conventional patch) and covers the operating band 5.07–5.89 GHz (15%) with measured peak gain and peak efficiency of 6.25 dBi and 78%, respectively. The proposed antennas are easy to fabricate, have a low-profile, and exhibit good performances which make them good candidates to use in real wireless applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Minkil Park ◽  
Wonhee Lee ◽  
Taeho Son

A composite Global Positioning System (GPS) patch antenna with a quadrature 3 dB hybrid coupler was designed and implemented for working RHCP and had a broadband axial ratio (AR) bandwidth. We designed two patches as a FR-4 patch and 1.5 mm thickness thin ceramic patch with a quadrature 3 dB hybrid coupler. A CP radiation pattern was achieved, and the AR bandwidth improved by incorporating a quadrature 3 dB hybrid coupler feed structure in a micro-strip patch antenna. SMD by chip elements was applied to the quadrature 3 dB hybrid coupler. For the composite FR-4 and ceramic patch antennas, the VSWR measurement showed a 2 : 1 ratio over the entire design band, and the 3 dB AR bandwidth was 295 and 580 MHz for the FR-4 patch and ceramic patch antennas, respectively. The antenna gains for the composite FR-4 and ceramic patch antennas were measured as 1.36–2.75 and 1.47–2.71 dBi with 15.11–25.3% and 19.25–28.45% efficiency, respectively.


Author(s):  
Ronak Vashi ◽  
Trushit Upadhyaya ◽  
Arpan Desai

Abstract In this paper, a semi-flexible 2 × 1 array antenna is proposed with epoxy glass fiber and graphene as patch and ground, respectively. Microstrip patch antenna with a center parasitic patch of half-wavelength and slot in the radiating patch have been incorporated for the bandwidth enhancement in order of 79.56% (2.21–5.13 GHz). The antenna has an overall size of 0.30λ × 0.24λ at a lower frequency of operation (2.45 GHz). The incorporation of slotted Graphene in radiating element leads to a wideband regime with satisfactory gain values of 2.73 and 3.744 dBi at 2.40 and 4.0 GHz, respectively. Antenna radiation efficiency in the range of 78% with linear polarization makes the antenna appropriate for WLAN band and smart wireless devices application.


This paper present the brief view to design of a microstrip rectangular patch antenna. Microstrip patch antennas are used because of configuration such as low profile, conformal, light weight, and easy fabrication. The linear polarization and circularly polarization of microstrip patch antennas have attracted more attention recently. These antennas are significant due to their ability to improve the benefits of microwave imaging application. The Federal Communication Commission (FCC) has approved the frequency limit for narrowband and wideband antenna. One of the advantage of the narrow band technology is the design of feasible compact conformal antennas. Therefore a compact miniaturized microstrip rectangular patch antenna has been proposed to design for microwave imaging application. The miniaturization of microstrip patch antenna has been done to obtain the better narrow bandwidth, return loss and Voltage Standing Wave Ratio (VSWR). Ultra Wide Band (UWB) is achieved by using certain techniques which is used for expansion of bandwidth. The rectangular patch antenna with a 50Ωmicrostrip feed is fabricated on the FR4 substrate.


Author(s):  
Prithu Roy ◽  
Rashmi Singh ◽  
Akshay Jain ◽  
Prashant Bansal ◽  

2012 ◽  
Vol 198-199 ◽  
pp. 1594-1598
Author(s):  
Xing Bing Ma ◽  
Hong Xing Zheng

A wide-band antenna coupling with an elliptical slot was discussed in this paper. To implement the wide band operation, an elliptical ring slot was etched on a polygonal patch. The properties of this design have been verified by using electromagnetic simulation software. Comparing to the conventional U-slot patch antenna fed by Π-shaped slot, the proposed structure is with the same impedance in bandwidth, but less than 10% in size.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Erdem Demircioglu ◽  
Ahmet Fazil Yagli ◽  
Senol Gulgonul ◽  
Haydar Ankishan ◽  
Emre Oner Tartan ◽  
...  

This paper discusses bandwidth enhancement for multiband microstrip patch antennas (MMPAs) using symmetrical rectangular/square slots etched on the patch and the substrate properties. The slot parameters on MMPA are modeled using soft computing technique of artificial neural networks (ANN). To achieve the best ANN performance, Particle Swarm Optimization (PSO) and Differential Evolution (DE) are applied with ANN’s conventional training algorithm in optimization of the modeling performance. In this study, the slot parameters are assumed as slot distance to the radiating patch edge, slot width, and length. Bandwidth enhancement is applied to a formerly designed MMPA fed by a microstrip transmission line attached to the center pin of 50 ohm SMA connecter. The simulated antennas are fabricated and measured. Measurement results are utilized for training the artificial intelligence models. The ANN provides 98% model accuracy for rectangular slots and 97% for square slots; however, ANFIS offer 90% accuracy with lack of resonance frequency tracking.


2015 ◽  
Vol 8 (7) ◽  
pp. 1111-1119 ◽  
Author(s):  
Satish K. Jain

Since a conventional microstrip patch antenna is inherently a narrowband radiator, stacked-patch antennas are commonly used either to enhance the bandwidth or to achieve multi-band characteristics. However, the stacked patch structure has a number of geometrical variables which need to be optimized to achieve the desired characteristics. The conventional design procedure involves repeated costly and time-consuming simulations on an electromagnetic simulator to optimize the various geometrical parameters to arrive at the desired radiation characteristics. In this paper, the task of stacked patch antenna design has been approached as an optimization problem. In order to make a faster CAD module for the stacked-antenna design problem, the simulator has been replaced by a trained artificial neural network (ANN) and embedded in a particle swarm optimization algorithm (PSOA). The ANN is helpful in constructing the “function mapping black-box”, which can relate the frequencies and associated bandwidths of the antenna with its dimensional parameters. The role of the PSOA is to decide the geometrical parameters of the antenna, in response to the designer-specified frequencies and bandwidths. In order to validate the authenticity of the proposed method, a number of antennas have been designed, fabricated, and tested in the laboratory. Simulated and measured results have been compared which establish the accuracy of the proposed technique.


Sign in / Sign up

Export Citation Format

Share Document