scholarly journals Next Generation Microwave and Millimeter-Wave Measurement Techniques and Systems

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1653
Author(s):  
Ahmed Al-Saman ◽  
Michael Cheffena ◽  
Olakunle Elijah ◽  
Yousef A. Al-Gumaei ◽  
Sharul Kamal Abdul Rahim ◽  
...  

The millimeter-wave (mmWave) is expected to deliver a huge bandwidth to address the future demands for higher data rate transmissions. However, one of the major challenges in the mmWave band is the increase in signal loss as the operating frequency increases. This has attracted several research interests both from academia and the industry for indoor and outdoor mmWave operations. This paper focuses on the works that have been carried out in the study of the mmWave channel measurement in indoor environments. A survey of the measurement techniques, prominent path loss models, analysis of path loss and delay spread for mmWave in different indoor environments is presented. This covers the mmWave frequencies from 28 GHz to 100 GHz that have been considered in the last two decades. In addition, the possible future trends for the mmWave indoor propagation studies and measurements have been discussed. These include the critical indoor environment, the roles of artificial intelligence, channel characterization for indoor devices, reconfigurable intelligent surfaces, and mmWave for 6G systems. This survey can help engineers and researchers to plan, design, and optimize reliable 5G wireless indoor networks. It will also motivate the researchers and engineering communities towards finding a better outcome in the future trends of the mmWave indoor wireless network for 6G systems and beyond.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 64 ◽  
Author(s):  
Fidel Rodríguez-Corbo ◽  
Leyre Azpilicueta ◽  
Mikel Celaya-Echarri ◽  
Peio López-Iturri ◽  
Imanol Picallo ◽  
...  

With the growing demand of vehicle-mounted sensors over the last years, the amount of critical data communications has increased significantly. Developing applications such as autonomous vehicles, drones or real-time high-definition entertainment requires high data-rates in the order of multiple Gbps. In the next generation of vehicle-to-everything (V2X) networks, a wider bandwidth will be needed, as well as more precise localization capabilities and lower transmission latencies than current vehicular communication systems due to safety application requirements; 5G millimeter wave (mmWave) technology is envisioned to be the key factor in the development of this next generation of vehicular communications. However, the implementation of mmWave links arises with difficulties due to blocking effects between mmWave transceivers, as well as different channel impairments for these high frequency bands. In this work, the mmWave channel propagation characterization for V2X communications has been performed by means of a deterministic in-house 3D ray launching simulation technique. A complex heterogeneous urban scenario has been modeled to analyze the different propagation phenomena of multiple mmWave V2X links. Results for large and small-scale propagation effects are obtained for line-of-sight (LOS) and non-LOS (NLOS) trajectories, enabling inter-data vehicular comparison. These analyzed results and the proposed methodology can aid in an adequate design and implementation of next generation vehicular networks.


Author(s):  
Guy Vernet ◽  
Gerard Beaudin ◽  
Dominique Cros ◽  
Paul Crozat ◽  
Gilles Dambrine ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Parvin Kumar ◽  
Sanjay Kumar Sharma ◽  
Shelly Singla ◽  
Varun Gupta ◽  
Abhishek Sharma

Abstract In today’s scenario, wireless communication is turning into a decisive and leading backbone to access the worldwide network. Therefore, the usage of mobile phones and broadband is rising staggeringly. To satisfy their expulsive needs, it demands increment in data rates while providing higher bandwidth and utilizing optical fiber in wireless communication, and this becomes a worldwide analysis area. Radio over fiber (RoF) system is taken into account as best solution to fulfill these needs. In RoF system, the radio frequency signal operated at millimeter wave (30–300 GHz) is centralized and processed at control station (CS) and also, the CS upconverts this electrical signal to optical domain. By employing optical fiber link, this signal reaches to base station (BS). Then, the received optical signal converts back to electrical domain at the respective BS. Now BS radiates the electrical signal to corresponding mobile station (MS) in commission with the millimeter wave frequency bands. This RoF system is providing massive bandwidth, facilitating large mobility for RF frequency signals, small loss, fast and cost effective setup, wonderful security, and unlicensed spectrum etc. The RoF system introduces microcells structure for BS cells to boost the frequency reuse and needed capacity. It has benefits in terms of ability to fulfill increasing bandwidth demands to cut back the power consumption and the dimensions of the handset devices. This paper firstly explains the overview of existing wireless mobile communication and broadband systems and then, targets the review of RoF system which will become energy efficient system for next generation mobile communication and future broadband systems. This paper also includes the performance degradation and evaluation parameters. Finally, this paper presents the various research opportunities for its implementation zone.


Sign in / Sign up

Export Citation Format

Share Document