Sampling time scheduling for a CAN-based dynamical system: A simulation practice

Author(s):  
Amira Sarayati Ahmad Dahalan ◽  
Abdul Rashid Husaint ◽  
Mohd Badril NorShah ◽  
Muhammad Iqbal Zakaria ◽  
Muhammad Nizam Kamarudin
Author(s):  
Paul Ritchie ◽  
Özkan Karabacak ◽  
Jan Sieber

A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far the parameter exceeds the tipping threshold maximally and how long the parameter stays above the threshold to avoid tipping in an inverse-square law to observable properties of the dynamical system near the fold. For the case when the dynamical system is subject to stochastic forcing we give an approximation to the probability of tipping if a parameter changing in time reverses near the tipping point. The derived approximations are valid if the parameter change in time is sufficiently slow. We demonstrate for a higher-dimensional system, a model for the Indian summer monsoon, how numerically observed escape from the equilibrium converge to our asymptotic expressions. The inverse-square law between peak of the parameter forcing and the time the parameter spends above a given threshold is also visible in the level curves of equal probability when the system is subject to random disturbances.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79
Author(s):  
Stefan Wagner

A dynamical system is a triple ( A , G , α ) consisting of a unital locally convex algebra A, a topological group G, and a group homomorphism α : G → Aut ( A ) that induces a continuous action of G on A. Furthermore, a unital locally convex algebra A is called a continuous inverse algebra, or CIA for short, if its group of units A × is open in A and the inversion map ι : A × → A × , a ↦ a − 1 is continuous at 1 A . Given a dynamical system ( A , G , α ) with a complete commutative CIA A and a compact group G, we show that each character of the corresponding fixed point algebra can be extended to a character of A.


1999 ◽  
Vol 10 (01) ◽  
pp. 129-157 ◽  
Author(s):  
J. QUAEGEBEUR ◽  
J. VERDING

A method for constructing densely defined lower semi-continuous weights on C*-algebras is presented. The method can be used to construct a "dual weight" on the C*-crossed product A×αG of a C*-dynamical system (A,G,α), starting from a relatively α-invariant densely defined lower semi-continuous weight on A. As an application we show that the Haar measure on the quantum E(2) group is a C*-dual weight.


Author(s):  
A. J. Roberts

AbstractA centre manifold or invariant manifold description of the evolution of a dynamical system provides a simplified view of the long term evolution of the system. In this work, I describe a procedure to estimate the appropriate starting position on the manifold which best matches an initial condition off the manifold. I apply the procedure to three examples: a simple dynamical system, a five-equation model of quasi-geostrophic flow, and shear dispersion in a channel. The analysis is also relevant to determining how best to account, within the invariant manifold description, for a small forcing in the full system.


2020 ◽  
Author(s):  
Anton van Wyk ◽  
Guanrong Chen ◽  
Eric W. M. Wong

This brief presents the first observations of multivaluedness in four systems: a random process, a nonlinear nondynamical system, a nonlinear dynamical system with nonlinearly sensed input and output and an adaptive linear estimator. The preliminary findings reported here, suggest the impact of multivaluedness in different types of networks to range from adverse to benign or even essential.


2014 ◽  
Vol 555 ◽  
pp. 361-368
Author(s):  
Marcel Migdalovici ◽  
Daniela Baran ◽  
Gabriela Vlădeanu

The stability control analyzed by us, in this show, is based on our results in the domain of dynamical systems that depend of parameters. Any dynamical system can be considered as dynamical system that depends of parameters, without numerical particularization of them. All concrete dynamical systems, meted in the specialized literature, underline the property of separation between the stable and unstable zones, in sense of Liapunov, for two free parameters. This property can be also seen for one or more free parameters. Some mathematical conditions of separation between stable and unstable zones for linear dynamical systems are identified by us. For nonlinear systems, the conditions of separation may be identified using the linear system of first approximation attached to nonlinear system. A necessary condition of separation between stable and unstable zones, identified by us, is the sufficient order of differentiability or conditions of continuity for the functions that define the dynamical system. The property of stability zones separation can be used in defining the strategy of stability assurance and optimizing of the parameters, in the manner developed in the paper. The cases of dynamical systems that assure the separations of the stable and unstable zones, in your evolution, and permit the stability control, are analyzed in the paper.


Sign in / Sign up

Export Citation Format

Share Document