E-mode p-FET-bridge HEMT: Toward high VTH, low reverse-conduction loss and enhanced stability

Author(s):  
Mengyuan Hua ◽  
Junting Chen ◽  
Chengcai Wang ◽  
Lingling Li ◽  
Ling Liu ◽  
...  
Author(s):  
Maryam Aisyah Abdullah ◽  
Siti Munirah Mohd Faudzi ◽  
Nadiah Mad Nasir

Abstract:: Medicinal chemists have continuously shown interest in new curcuminoid derivatives, the diarylpentadienones, owing to their enhanced stability feature and easy preparation using a one-pot synthesis. Thus far, methods such as Claisen-Schmidt condensation and Julia-Kocienski olefination have been utilised for the synthesis of these compounds. Diarylpentadienones possess a high potential as a chemical source for designing and developing new and effective drugs for the treatment of diseases, including inflammation, cancer, and malaria. In brief, this review article focuses on the broad pharmacological applications and the summary of the structure-activity relationship of molecules which can be employed to further explore the structure of diarylpentadienone. The current methodological developments towards the synthesis of diarylpentadienones are also discussed.


2018 ◽  
Vol 18 (10) ◽  
pp. 857-880 ◽  
Author(s):  
Salma E. Ahmed ◽  
Nahid Awad ◽  
Vinod Paul ◽  
Hesham G. Moussa ◽  
Ghaleb A. Husseini

Conventional chemotherapeutics lack the specificity and controllability, thus may poison healthy cells while attempting to kill cancerous ones. Newly developed nano-drug delivery systems have shown promise in delivering anti-tumor agents with enhanced stability, durability and overall performance; especially when used along with targeting and triggering techniques. This work traces back the history of chemotherapy, addressing the main challenges that have encouraged the medical researchers to seek a sanctuary in nanotechnological-based drug delivery systems that are grafted with appropriate targeting techniques and drug release mechanisms. A special focus will be directed to acoustically triggered liposomes encapsulating doxorubicin.


2015 ◽  
Vol 294 ◽  
pp. 248-253 ◽  
Author(s):  
Agnese Birrozzi ◽  
Fabio Maroni ◽  
Rinaldo Raccichini ◽  
Roberto Tossici ◽  
Roberto Marassi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1756
Author(s):  
Gang Wang ◽  
Qiyu Hu ◽  
Chunyu Xu ◽  
Bin Zhao ◽  
Xiaobao Su

This paper proposes an integrated magnetic structure for a CLLC resonant converter. With the proposed integrated magnetic structure, two resonant inductances and the transformer are integrated into one magnetic core, which improves the power density of the CLLC resonant converter. In the proposed integrated magnetic structure, two resonant inductances are decoupled with the transformer and can be adjusted by the number of turns in each inductance. Furthermore, two resonant inductances are coupled to reduce the number of turns in each inductance. As a result, the conduction loss can be reduced. The trade-off design of the integrated magnetic structure is carried out based on the Pareto optimization procedure. With the Pareto optimization procedure, both high efficiency and high-power density can be achieved. The proposed integrated magnetic structure is validated by theoretical analysis, simulations, and experiments.


2021 ◽  
pp. 100122
Author(s):  
Alexandra H. Teodor ◽  
Lucas B. Thal ◽  
Shinduri Vijayakumar ◽  
Madison Chan ◽  
Gabriela Little ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guolong Sang ◽  
Pei Xu ◽  
Tong Yan ◽  
Vignesh Murugadoss ◽  
Nithesh Naik ◽  
...  

Abstract Lightweight microcellular polyurethane (TPU)/carbon nanotubes (CNTs)/ nickel-coated CNTs (Ni@CNTs)/polymerizable ionic liquid copolymer (PIL) composite foams are prepared by non-solvent induced phase separation (NIPS). CNTs and Ni@CNTs modified by PIL provide more heterogeneous nucleation sites and inhibit the aggregation and combination of microcellular structure. Compared with TPU/CNTs, the TPU/CNTs/PIL and TPU/CNTs/Ni@CNTs/PIL composite foams with smaller microcellular structures have a high electromagnetic interference shielding effectiveness (EMI SE). The evaporate time regulates the microcellular structure, improves the conductive network of composite foams and reduces the microcellular size, which strengthens the multiple reflections of electromagnetic wave. The TPU/10CNTs/10Ni@CNTs/PIL foam exhibits slightly higher SE values (69.9 dB) compared with TPU/20CNTs/PIL foam (53.3 dB). The highest specific EMI SE of TPU/20CNTs/PIL and TPU/10CNTs/10Ni@CNTs/PIL reaches up to 187.2 and 211.5 dB/(g cm−3), respectively. The polarization losses caused by interfacial polarization between TPU substrates and conductive fillers, conduction loss caused by conductive network of fillers and magnetic loss caused by Ni@CNT synergistically attenuate the microwave energy.


2021 ◽  
Author(s):  
XINGYUN Li ◽  
Bin Han ◽  
Yaojie Xu ◽  
Xiao Liu ◽  
Chunhui Zhao ◽  
...  

As an advanced two-dimensional (2D) material with unique properties, black phosphorus (BP) has attracted great attention in a variety of fields. One of the main obstacles for practical application of...


Sign in / Sign up

Export Citation Format

Share Document