Fiber-wireless signal transport by terahertz waves

Author(s):  
Atsushi Kanno
2017 ◽  
Vol 137 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Tetsuo Fukuchi ◽  
Norikazu Fuse ◽  
Mitsutoshi Okada ◽  
Tomoharu Fujii ◽  
Maya Mizuno ◽  
...  

2015 ◽  
Vol 135 (11) ◽  
pp. 647-650 ◽  
Author(s):  
Tetsuo Fukuchi ◽  
Norikazu Fuse ◽  
Maya Mizuno ◽  
Kaori Fukunaga

2020 ◽  
Vol 79 (1) ◽  
pp. 47-57
Author(s):  
O. G. Viunytskyi ◽  
A. V. Totsky ◽  
Karen O. Egiazarian

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4987
Author(s):  
Jianlong Liu ◽  
Xin Li ◽  
Ruirui Jiang ◽  
Kaiqiang Yang ◽  
Jing Zhao ◽  
...  

Terahertz waves are expected to be used in next-generation communications, detection, and other fields due to their unique characteristics. As a basic part of the terahertz application system, the terahertz detector plays a key role in terahertz technology. Due to the two-dimensional structure, graphene has unique characteristics features, such as exceptionally high electron mobility, zero band-gap, and frequency-independent spectral absorption, particularly in the terahertz region, making it a suitable material for terahertz detectors. In this review, the recent progress of graphene terahertz detectors related to photovoltaic effect (PV), photothermoelectric effect (PTE), bolometric effect, and plasma wave resonance are introduced and discussed.


2021 ◽  
Vol 11 (14) ◽  
pp. 6246
Author(s):  
Paweł Komorowski ◽  
Patrycja Czerwińska ◽  
Mateusz Kaluza ◽  
Mateusz Surma ◽  
Przemysław Zagrajek ◽  
...  

Recently, one of the most commonly discussed applications of terahertz radiation is wireless telecommunication. It is believed that the future 6G systems will utilize this frequency range. Although the exact technology of future telecommunication systems is not yet known, it is certain that methods for increasing their bandwidth should be investigated in advance. In this paper, we present the diffractive optical elements for the frequency division multiplexing of terahertz waves. The structures have been designed as a combination of a binary phase grating and a converging diffractive lens. The grating allows for differentiating the frequencies, while the lens assures separation and focusing at the finite distance. Designed structures have been manufactured from polyamide PA12 using the SLS 3D printer and verified experimentally. Simulations and experimental results are shown for different focal lengths. Moreover, parallel data transmission is shown for two channels of different carrier frequencies propagating in the same optical path. The designed structure allowed for detecting both signals independently without observable crosstalk. The proposed diffractive elements can work in a wide range of terahertz and sub-terahertz frequencies, depending on the design assumptions. Therefore, they can be considered as an appealing solution, regardless of the band finally used by the future telecommunication systems.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Liu Sun ◽  
Li Zhao ◽  
Rui-Yun Peng

AbstractWith the rapid development of terahertz technologies, basic research and applications of terahertz waves in biomedicine have attracted increasing attention. The rotation and vibrational energy levels of biomacromolecules fall in the energy range of terahertz waves; thus, terahertz waves might interact with biomacromolecules. Therefore, terahertz waves have been widely applied to explore features of the terahertz spectrum of biomacromolecules. However, the effects of terahertz waves on biomacromolecules are largely unexplored. Although some progress has been reported, there are still numerous technical barriers to clarifying the relation between terahertz waves and biomacromolecules and to realizing the accurate regulation of biological macromolecules by terahertz waves. Therefore, further investigations should be conducted in the future. In this paper, we reviewed terahertz waves and their biomedical research advantages, applications of terahertz waves on biomacromolecules and the effects of terahertz waves on biomacromolecules. These findings will provide novel ideas and methods for the research and application of terahertz waves in the biomedical field.


Sign in / Sign up

Export Citation Format

Share Document