Transmission Gate-Based 8T SRAM Cell for Biomedical Applications

Author(s):  
Valluri Aswini ◽  
Sarada Musala ◽  
Avireni Srinivasulu
2019 ◽  
Vol 13 (5) ◽  
pp. 584-595 ◽  
Author(s):  
Soumitra Pal ◽  
Vivek Gupta ◽  
Wing Hung Ki ◽  
Aminul Islam

Author(s):  
Aswini Valluri ◽  
◽  
Sarada Musala ◽  
Muralidharan Jayabalan ◽  
◽  
...  

There is an immense necessity of several kilo bytes of embedded memory for Biomedical systems which typically operate in the sub-threshold domain with perfect efficiency. SRAMs (Static Random Access Memory) dominates the total power consumption and the overall silicon area, as 70% of the die has been occupied by them. This brief proposes the design of a Transmission gate-based SRAM cell for Bio medical application eliminating the use of peripheral circuitry during the read operation. It commences the read operation directly with the help of Transmission gates with which the data stored in the storage nodes can be read, instead of using the precharge and sense amplifier circuits which suits better for the implantable devices. This topology offers smaller area, reduced delay, low power consumption as well as improved data stabilization in the read operation. The cell is implemented in 45nm CMOS technology operated at 0.45V.


Author(s):  
Harekrishna Kumar ◽  
V.K Tomar

In this paper, a 9T SRAM cell with low power (LP9T) and improved performance has been proposed. This cell is free from half-select issue and works with single-ended read and differential write operation in the sub-threshold region. To evaluate the relative performance, the obtained characteristics of LP9T SRAM cell are compared with other state-of-the-art designs at 45-nm technology node. The read and write power dissipation of LP9T SRAM cell is reduced by [Formula: see text] and [Formula: see text] as compared to Conv.6T SRAM cell. In proposed cell, leakage power is reduced by [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] as compared to conventional 6T (Conv.6T), low power (LP8T), transmission gate 8T(TG8T), transmission gate 9T (TG9T), Schmitt trigger 9T (ST9T), and positive feedback control 10T (PFC10T) SRAM cells. This reduction in leakage power is attributed to stacking effect. LP9T SRAM cell also exhibits significant improvement in read/write access time as compared to all considered cells. Also, the read and write energy of proposed cell is lowest among all considered cells. The LP9T SRAM cell has [Formula: see text] and [Formula: see text] higher read and write stability as compared to Conv.6T SRAM cell. Proposed SRAM cell has the highest value of ON to OFF current ratio ([Formula: see text]) which signifies the highest bit-cell density among all considered cells. The LP9T SRAM cell occupies [Formula: see text] large area as compared to Conv.6T SRAM cell. The overall quality of SRAM cell is calculated through the electrical quality metric (EQM). It is observed that LP9T SRAM cell has the highest value of EQM in comparison to considered cells at 0.3[Formula: see text]V supply voltage.


Author(s):  
T. L. Hayes

Biomedical applications of the scanning electron microscope (SEM) have increased in number quite rapidly over the last several years. Studies have been made of cells, whole mount tissue, sectioned tissue, particles, human chromosomes, microorganisms, dental enamel and skeletal material. Many of the advantages of using this instrument for such investigations come from its ability to produce images that are high in information content. Information about the chemical make-up of the specimen, its electrical properties and its three dimensional architecture all may be represented in such images. Since the biological system is distinctive in its chemistry and often spatially scaled to the resolving power of the SEM, these images are particularly useful in biomedical research.In any form of microscopy there are two parameters that together determine the usefulness of the image. One parameter is the size of the volume being studied or resolving power of the instrument and the other is the amount of information about this volume that is displayed in the image. Both parameters are important in describing the performance of a microscope. The light microscope image, for example, is rich in information content (chemical, spatial, living specimen, etc.) but is very limited in resolving power.


Sign in / Sign up

Export Citation Format

Share Document