Vector Study of Induced Electromotive Force of a Single Antenna at Any Angle

Author(s):  
Jiren Xu ◽  
Yunhui Guo ◽  
Jiang Wang ◽  
Weilu Wu
1879 ◽  
Vol 7 (178supp) ◽  
pp. 2831-2832
Author(s):  
J. T. Sprague
Keyword(s):  

Author(s):  
Jianqi Li ◽  
Yu Zhou ◽  
Jianying Li

This paper presented a novel analytical method for calculating magnetic field in the slotted air gap of spoke-type permanent-magnet machines using conformal mapping. Firstly, flux density without slots and complex relative air-gap permeance of slotted air gap are derived from conformal transformation separately. Secondly, they are combined in order to obtain normalized flux density taking account into the slots effect. The finite element (FE) results confirmed the validity of the analytical method for predicting magnetic field and back electromotive force (BEMF) in the slotted air gap of spoke-type permanent-magnet machines. In comparison with FE result, the analytical solution yields higher peak value of cogging torque.


Alloy Digest ◽  
1989 ◽  
Vol 38 (7) ◽  

Abstract EVANOHM alloy S offers optimum stability and flexibility with regard to both size and required temperature coefficient of resistance. Its extremely low electromotive force vs copper together with its high electrical resistivity are highly desirable properties in a precision resistance wire. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as joining. Filing Code: Ni-373. Producer or source: Wilbur B. Driver Company.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Chunyan Li ◽  
Fei Guo ◽  
Baoquan Kou ◽  
Tao Meng

A permanent magnet synchronous motor (PMSM) based on the principle of variable exciting magnetic reluctance (VMRPMSM) is presented. The motor is equipped with symmetrical non-magnetic conductors on both sides of the tangential magnetized permanent magnets (PMs). By placing the non-magnetic conductor (NMC), the magnetic reluctance in the exciting circuit is adjusted, and the flux weakening (FW) of the motor is realized. Hence, the NMC is studied comprehensively. On the basis of introducing the motor structure, the FW principle of this PMSM is described. The shape of the NMC is determined by analyzing and calculating the electromagnetic force (EF) acting on the PMs. We calculate the magnetic reluctance of the NMC and research on the effects of the NMC on electromagnetic force, d-axis and q-axis inductance and FW performance. The critical speeds from the test of the no-load back electromotive force (EMF) verify the correctness of the NMC design. The analysis is corresponding to the test result which lays the foundation of design for this kind of new PMSM.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1314
Author(s):  
Mykola Moroz ◽  
Fiseha Tesfaye ◽  
Pavlo Demchenko ◽  
Myroslava Prokhorenko ◽  
Nataliya Yarema ◽  
...  

Equilibrium phase formations below 600 K in the parts Ag2Te–FeTe2–F1.12Te–Ag2Te and Ag8GeTe6–GeTe–FeTe2–AgFeTe2–Ag8GeTe6 of the Fe–Ag–Ge–Te system were established by the electromotive force (EMF) method. The positions of 3- and 4-phase regions relative to the composition of silver were applied to express the potential reactions involving the AgFeTe2, Ag2FeTe2, and Ag2FeGeTe4 compounds. The equilibrium synthesis of the set of phases was performed inside positive electrodes (PE) of the electrochemical cells: (−)Graphite ‖LE‖ Fast Ag+ conducting solid-electrolyte ‖R[Ag+]‖PE‖ Graphite(+), where LE is the left (negative) electrode, and R[Ag+] is the buffer region for the diffusion of Ag+ ions into the PE. From the observed results, thermodynamic quantities of AgFeTe2, Ag2FeTe2, and Ag2FeGeTe4 were experimentally determined for the first time. The reliability of the division of the Ag2Te–FeTe2–F1.12Te–Ag2Te and Ag8GeTe6–GeTe–FeTe2–AgFeTe2–Ag8GeTe6 phase regions was confirmed by the calculated thermodynamic quantities of AgFeTe2, Ag2FeTe2, and Ag2FeGeTe4 in equilibrium with phases in the adjacent phase regions. Particularly, the calculated Gibbs energies of Ag2FeGeTe4 in two different adjacent 4-phase regions are consistent, which also indicates that it has stoichiometric composition.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 509
Author(s):  
Iqra Hameed ◽  
Pham-Viet Tuan ◽  
Mario R. Camana ◽  
Insoo Koo

In this paper, we study the transmit power minimization problem with optimal energy beamforming in a multi-antenna wireless powered communication network (WPCN). The considered network consists of one hybrid access point (H-AP) with multiple antennae and multiple users with a single antenna each. The H-AP broadcasts an energy signal on the downlink, using energy beamforming to enhance the efficiency of the transmit energy. In this paper, we jointly optimize the downlink time allocation for wireless energy transfer (WET), the uplink time allocation for each user to send a wireless information signal to the H-AP, the power allocation to each user on the uplink, and the downlink energy beamforming vectors while controlling the transmit power at the H-AP. It is challenging to solve this non-convex complex optimization problem because it is numerically intractable and involves high computational complexity. We exploit a sequential parametric convex approximation (SPCA)-based iterative method, and propose optimal and sub-optimal solutions for the transmit power minimization problem. All the proposed schemes are verified by numerical simulations. Through the simulation results, we present the performance of the proposed schemes based on the effect of the number of transmit antennae and the number of users in the proposed WPCN. Through the performance evaluation, we show that the SPCA-based joint optimization solution performance is superior to other solutions.


Sign in / Sign up

Export Citation Format

Share Document