scholarly journals Research on the Non-Magnetic Conductor of a PMSM Based on the Principle of Variable Exciting Magnetic Reluctance

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Chunyan Li ◽  
Fei Guo ◽  
Baoquan Kou ◽  
Tao Meng

A permanent magnet synchronous motor (PMSM) based on the principle of variable exciting magnetic reluctance (VMRPMSM) is presented. The motor is equipped with symmetrical non-magnetic conductors on both sides of the tangential magnetized permanent magnets (PMs). By placing the non-magnetic conductor (NMC), the magnetic reluctance in the exciting circuit is adjusted, and the flux weakening (FW) of the motor is realized. Hence, the NMC is studied comprehensively. On the basis of introducing the motor structure, the FW principle of this PMSM is described. The shape of the NMC is determined by analyzing and calculating the electromagnetic force (EF) acting on the PMs. We calculate the magnetic reluctance of the NMC and research on the effects of the NMC on electromagnetic force, d-axis and q-axis inductance and FW performance. The critical speeds from the test of the no-load back electromotive force (EMF) verify the correctness of the NMC design. The analysis is corresponding to the test result which lays the foundation of design for this kind of new PMSM.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1583
Author(s):  
Wei-Tse Kao ◽  
Jonq-Chin Hwang ◽  
Jia-En Liu

This study aimed to develop a three-phase permanent-magnet synchronous motor drive system with improvement in current harmonics. Considering the harmonic components in the induced electromotive force of a permanent-magnet synchronous motor, the offline response of the induced electromotive force (EMF) was measured for fast Fourier analysis, the main harmonic components were obtained, and the voltage required to reduce the current harmonic components in the corresponding direct (d-axis) and quadrature (q-axis) axes was calculated. In the closed-loop control of the direct axis and quadrature axis current in the rotor reference frame, the compensation amount of the induced EMF with harmonic components was added. Compared with the online adjustment of current harmonic injection, this simplifies the control strategy. The drive system used a 32-bit digital signal processor (DSP) TMS320F28069 as the control core, the control strategies were implemented in software, and a resolver with a resolver-to-digital converter (RDC) was used for the feedback of angular position and speed. The actual measurement results of the current harmonic improvement control show that the total harmonic distortion of the three-phase current was reduced from 5.30% to 2.31%, and the electromagnetic torque ripple was reduced from 15.28% to 5.98%. The actual measurement results verify the feasibility of this method.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1736
Author(s):  
In-Jun Yang ◽  
Si-Woo Song ◽  
Dong-Ho Kim ◽  
Kwang-Soo Kim ◽  
Won-Ho Kim

In an interior permanent magnet synchronous motor, an adhesive such as bond is generally injected into the magnet tolerance to prevent vibration of the permanent magnet within the insertion space. In this case, a disadvantage is that the magnet tolerance does not contribute to the performance. In this paper, ferrofluid is inserted to improve the torque density, utilizing the magnet tolerance. When inserting ferrofluid into the magnet tolerance, it is important to fix the magnet because conventional adhesives are not used, and it is important that the ferrofluid does not act as a leakage path within the insertion space. In this study, a new rotor configuration using a plastic barrier that satisfies these considerations was introduced. The analysis was conducted through finite element analysis (FEA), and this technique was verified by comparing the simulation results and the experimental results through a dynamo test. It was confirmed that the no-load back electromotive force in the final model increased through ferrofluid injection.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hongchang Ding ◽  
Xiaobin Gong ◽  
Yuchun Gong

For high-speed permanent magnet synchronous motor (PMSM), its efficiency is significantly affected by the performance of permanent magnets (PMs), and the phenomenon of demagnetization will occur with the increase of PM temperature. So, the temperature detection of PMs in rotor is very necessary for the safe operation of PMSM, and direct detection is difficult due to the rotation of rotor. Based on the relationship between permanent magnet flux linkage and its temperature, in this paper, a new temperature estimation method using model reference fuzzy adaptive control (MRFAC) is proposed to estimate PM temperature. In this method, the model reference adaptive system (MRAS) is built to estimate the permanent magnet flux linkage, and the fuzzy control method is introduced into MRAS, which is used to improve the accuracy and applicable speed range of parameters estimated by MRAS. Different permanent magnet flux linkages are estimated in MRFAC based on the variation of stator resistance, which corresponds to different working temperatures measured by thermal resistance, and the PM temperature will be obtained according to the estimated permanent magnet flux linkage. At last, the back electromotive force (BEMF) is measured on the experimental motor, and the flux linkage and PM temperature of the experimental motor are deduced according to the BEMF. Compared with the experimental results, the estimated PM temperature is very close to the actual test value, and the error is less than 5%, which verifies that the proposed method is suitable for the estimation of PM temperature.


2013 ◽  
Vol 64 (5) ◽  
pp. 298-304 ◽  
Author(s):  
Baghdad Belabbes ◽  
Abdelkader Lousdad ◽  
Abdelkader Meroufel ◽  
Ahmed Larbaoui

Abstract The aim of the present paper is the study of the behaviour of passivity based control and difficulties due to synthesis for various operating conditions of a synchronous motor with a permanent magnets. The study takes into account the guarantee of satisfactory static and dynamic performance. It also allows the system to be insensitive to disturbances and uncertainties on the parameters. A number of estimation techniques have been developed to achieve speed and position sensorless permanent magnet synchronous motor (PMSM) drives. Most of them suffer from variation of motor parameters such as the stator resistance, stator inductance and torque constant. Also it is known that conventional linear estimators are not adaptive variations of the operating point in a nonlinear system.


Author(s):  
Łukasz Knypiński ◽  
Cezary Jedryczka ◽  
Andrzej Demenko

Purpose The purpose of this paper is to compare parameters and properties of optimal structures of a line-start permanent magnet synchronous motor (LSPMSM) for the cage winding of a different rotor bar shape. Design/methodology/approach The mathematical model of the considered motor includes the equation of the electromagnetic field, the electric circuit equations and equation of mechanical equilibrium. The numerical implementation is based on finite element method (FEM) and step-by-step algorithm. To improve the particle swarm optimization (PSO) algorithm convergence, the velocity equation in the classical PSO method is supplemented by an additional term. This term represents the location of the center of mass of the swarm. The modified particle swarm algorithm (PSO-MC) has been used in the optimization calculations. Findings The LSPMSM with drop type bars has better performance and synchronization parameters than motors with circular bars. It is also proved that the used modification of the classical PSO procedure ensures faster convergence for solving the problem of optimization LSPMSM. This modification is particularly useful when the field model of phenomena is used. Originality/value The authors noticed that to obtain the maximum power factor and efficiency of the LSPMSM, the designer should take into account dimensions and the placement of the magnets in the designing process. In the authors’ opinion, the equivalent circuit models can be used only at the preliminary stage of the designing of line-start permanent magnet motors.


Sign in / Sign up

Export Citation Format

Share Document