Fed xData: A Federated Learning Framework for Enabling Contextual Health Monitoring in a Cloud-Edge Network

Author(s):  
Tran Anh Khoa ◽  
Do-Van Nguyen ◽  
Minh-Son Dao ◽  
Koji Zettsu
2021 ◽  
Author(s):  
Ainulla Khan ◽  
Krishnan Balasubramaniam

Abstract The continuous Non-Destructive Evaluation of assets for long-term assurance of performance has led to several developments over the deployment of a Real-Time Structural Health Monitoring (SHM) system. Considering the challenges involved under the implementation of an SHM system for the applications working under harsh environmental conditions with limited access to power sources this work is aimed to contribute towards overcoming those challenges by using the noise from the structure’s machinery or any ambient source as an alternative energy source and employing Fiber Optics based sensing, for its applicability under harsh environments. The required SHM system is realized with the cross-correlation of a fully diffused noise field, sensed using the Fiber Bragg Grating (FBG) sensors at two random locations. With no control on the input received as noise, to this end, a method is developed based on a Deep Learning framework, which is aimed towards a Universal Deployment of the passive SHM system. The methodology is designed to perform the health monitoring of the system, independent of the input perturbations. The validation performed on simulation data has demonstrated the feasibility of the developed technique towards the required kind of passive SHM system.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4331
Author(s):  
Hyeonjeong Lee ◽  
Miyoung Shin

Automatic detection of abnormal heart rhythms, including atrial fibrillation (AF), using signals obtained from a single-lead wearable electrocardiogram (ECG) device, is useful for daily cardiac health monitoring. In this study, we propose a novel image-based deep learning framework to classify single-lead ECG recordings of short variable length into several different rhythms associated with arrhythmias. By transforming variable-length 1D ECG signals into fixed-size 2D time-morphology representations and feeding them to the beat–interval–texture convolutional neural network (BIT-CNN) model, we aimed to learn the comprehensible characteristics of beat shape and inter-beat patterns over time for arrhythmia classification. The proposed approach allows feature embedding vectors to provide interpretable time-morphology patterns focused at each step of the learning process. In addition, this method reduces the number of model parameters needed to be trained and aids visual interpretation, while maintaining similar performance to other CNN-based approaches to arrhythmia classification. For experiments, we used the PhysioNet/CinC Challenge 2017 dataset and achieved an overall F1_NAO of 81.75% and F1_NAOP of 76.87%, which are comparable to those of the state-of-the-art methods for variable-length ECGs.


1969 ◽  
Vol 12 (1) ◽  
pp. 185-192 ◽  
Author(s):  
John L. Locke

Ten children with high scores on an auditory memory span task were significantly better at imitating three non-English phones than 10 children with low auditory memory span scores. An additional 10 children with high scores on an oral stereognosis task were significantly better at imitating two of the three phones than 10 children with low oral stereognosis scores. Auditory memory span and oral stereognosis appear to be important subskills in the learning of new articulations, perhaps explaining their appearance in the literature as “etiologies” of disordered articulation. Although articulation development and the experimental acquisition of non-English phones have certain obvious differences, they seem to share some common processes, suggesting that the sound learning framework may be an efficacious technique for revealing otherwise inaccessible information.


2007 ◽  
Author(s):  
Katherine Harris Abbott ◽  
Eleanor Palo Stoller ◽  
Julia Hannum Rose
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document