An Imaging Platform for Real-Time In Vitro Microscopic Imaging for Lab-on-CMOS Systems

Author(s):  
Bathiya Senevirathna ◽  
Sheung Lu ◽  
Elisabeth Smela ◽  
Pamela Abshire
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hafiz Muhammad Umer Farooqi ◽  
Bohye Kang ◽  
Muhammad Asad Ullah Khalid ◽  
Abdul Rahim Chethikkattuveli Salih ◽  
Kinam Hyun ◽  
...  

AbstractHepatic fibrosis is a foreshadowing of future adverse events like liver cirrhosis, liver failure, and cancer. Hepatic stellate cell activation is the main event of liver fibrosis, which results in excessive extracellular matrix deposition and hepatic parenchyma's disintegration. Several biochemical and molecular assays have been introduced for in vitro study of the hepatic fibrosis progression. However, they do not forecast real-time events happening to the in vitro models. Trans-epithelial electrical resistance (TEER) is used in cell culture science to measure cell monolayer barrier integrity. Herein, we explored TEER measurement's utility for monitoring fibrosis development in a dynamic cell culture microphysiological system. Immortal HepG2 cells and fibroblasts were co-cultured, and transforming growth factor β1 (TGF-β1) was used as a fibrosis stimulus to create a liver fibrosis-on-chip model. A glass chip-based embedded TEER and reactive oxygen species (ROS) sensors were employed to gauge the effect of TGF-β1 within the microphysiological system, which promotes a positive feedback response in fibrosis development. Furthermore, albumin, Urea, CYP450 measurements, and immunofluorescent microscopy were performed to correlate the following data with embedded sensors responses. We found that chip embedded electrochemical sensors could be used as a potential substitute for conventional end-point assays for studying fibrosis in microphysiological systems.


Author(s):  
Hanieh Gholizadeh ◽  
Hui Xin Ong ◽  
Peta Bradbury ◽  
Agisilaos Kourmatzis ◽  
Daniela Traini ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 499
Author(s):  
Tracy W. Liu ◽  
Seth T. Gammon ◽  
David Piwnica-Worms

Intravital microscopic imaging (IVM) allows for the study of interactions between immune cells and tumor cells in a dynamic, physiologically relevant system in vivo. Current IVM strategies primarily use fluorescence imaging; however, with the advances in bioluminescence imaging and the development of new bioluminescent reporters with expanded emission spectra, the applications for bioluminescence are extending to single cell imaging. Herein, we describe a molecular imaging window chamber platform that uniquely combines both bioluminescent and fluorescent genetically encoded reporters, as well as exogenous reporters, providing a powerful multi-plex strategy to study molecular and cellular processes in real-time in intact living systems at single cell resolution all in one system. We demonstrate that our molecular imaging window chamber platform is capable of imaging signaling dynamics in real-time at cellular resolution during tumor progression. Importantly, we expand the utility of IVM by modifying an off-the-shelf commercial system with the addition of bioluminescence imaging achieved by the addition of a CCD camera and demonstrate high quality imaging within the reaches of any biology laboratory.


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 370-377
Author(s):  
Edward Chaum ◽  
Ernő Lindner

ABSTRACT Background Target-controlled infusion anesthesia is used worldwide to provide user-defined, stable, blood concentrations of propofol for sedation and anesthesia. The drug infusion is controlled by a microprocessor that uses population-based pharmacokinetic data and patient biometrics to estimate the required infusion rate to replace losses from the blood compartment due to drug distribution and metabolism. The objective of the research was to develop and validate a method to detect and quantify propofol levels in the blood, to improve the safety of propofol use, and to demonstrate a pathway for regulatory approval for its use in the USA. Methods We conceptualized and prototyped a novel “smart” biosensor-enabled intravenous catheter capable of quantifying propofol at physiologic levels in the blood, in real time. The clinical embodiment of the platform is comprised of a “smart” biosensor-enabled catheter prototype, a signal generation/detection readout display, and a driving electronics software. The biosensor was validated in vitro using a variety of electrochemical methods in both static and flow systems with biofluids, including blood. Results We present data demonstrating the experimental detection and quantification of propofol at sub-micromolar concentrations using this biosensor and method. Detection of the drug is rapid and stable with negligible biofouling due to the sensor coating. It shows a linear correlation with mass spectroscopy methods. An intuitive graphical user interface was developed to: (1) detect and quantify the propofol sensor signal, (2) determine the difference between targeted and actual propofol concentration, (3) communicate the variance in real time, and (4) use the output of the controller to drive drug delivery from an in-line syringe pump. The automated delivery and maintenance of propofol levels was demonstrated in a modeled benchtop “patient” applying the known pharmacokinetics of the drug using published algorithms. Conclusions We present a proof-of-concept and in vitro validation of accurate electrochemical quantification of propofol directly from the blood and the design and prototyping of a “smart,” indwelling, biosensor-enabled catheter and demonstrate feedback hardware and software architecture permitting accurate measurement of propofol in blood in real time. The controller platform is shown to permit autonomous, “closed-loop” delivery of the drug and maintenance of user-defined propofol levels in a dynamic flow model.


2013 ◽  
Vol 749 ◽  
pp. 198-205
Author(s):  
Li Yu ◽  
Jing Liu ◽  
Chao Xu ◽  
Er Mei Luo ◽  
Ming Qiao Tang

Objective: To investigate a better method of inducing hUC-MSCs into chondrocytes in different culture system in vitro. Method: hUC-MSCs were isolated and cultured by tissue block culture, and the cells surface antigens were identified by flow cytometry, hUC-MSCs were cultured with chondrogenic media and stained with Alcian Blue. The production of matrix was estimated from the determination of hydroxyproline content and Alcian Blue method. Expressions of glycosaminoglycan (GAG), type II collagen and Sox-9 were assayed by real-time fluorescence quantitative PCR. Results: The cultured hUC-MSCs phenotype was CD105+/CD29+/CD44+/ CD31-/CD34-/ CD40-/CD45-/HLA-DR-. hUC-MSCs weakly expressed chondrocyte marker, which strongly expressed GAG and type II collagen after chondrogenic induction, and the cells were incubated in pellet culture with higher expression. Real-time PCR results demonstrated that chondrogenic induction cells were expressed GAG, type II collagen and Sox-9, and the cells were incubated in pellet culture with higher expression. Conclusion: hUC-MSCs incubated in pellet culture is more conducive to differentiate into chondrocytes than those cultured in monolayer culture system.


2020 ◽  
Vol 11 (2) ◽  
pp. 425-432 ◽  
Author(s):  
Shegufta Farazi ◽  
Fan Chen ◽  
Henry Foster ◽  
Raelene Boquiren ◽  
Shelli R. McAlpine ◽  
...  

A pH responsive pMAA nanogel that demonstrates high loading capacity and rapid intracellular delivery of hydrophilic peptides.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
E Di Girolamo ◽  
M Appignani ◽  
N Furia ◽  
M Marini ◽  
P De Filippo ◽  
...  

Abstract Background Direct exposure of implantable cardioverter-defibrillators (ICDs) during radiotherapy is still considered potentially harmful, or even unsafe, by manufacturers and current recommendations. The effects of photon beams on ICDs are unpredictable, depending on multiple factors, and malfunctions may present during exposure. Purpose To evaluate transient ICD malfunctions by direct exposure to doses up to 10 Gy during low-energy RT, forty-three contemporary wireless-enabled ICDs, with at least 4 months to elective replacement indicator (ERI) were evaluated in a real-time in-vitro session in three different centres. Methods All ICDs had baseline interrogation. Single chamber devices were programmed to the VVI/40 mode and dual or triple chamber devices were programmed to the DDD/40 mode. Rate response function and antitachycardia therapies were disabled, with the ventricular tachycardia (VT)/ventricular fibrillation (VF) detection windows still active. A centring computed tomography was performed to build the corresponding treatment plan and the ICDs were blinded randomized to receive either 2-, 5- or 10-Gy exposure by a low photon-energy linear accelerator (6MV) in a homemade water phantom (600 MU/min). The effective dose received by the ICDs was randomly assessed by an in-vivo dosimetry. During radiotherapy, the ICDs were observed in a real-time session using manufacturer specific programmer, and device function (pacing, sensing, programmed parameters, arrhythmia detections) was recorder by the video camera in the bunker throughout the entire photon exposure. All ICDs had an interrogation session immediately after exposure. Results During radiotherapy course, almost all ICDs (93%) recorded major or minor transient electromagnetic interferences. On detail, sixteen ICDs (37.2%) reported atrial and/or ventricular oversensing, with base-rate-pacing inhibition and VT/VF detection. Twenty-four ICDs (55.8%) recorded non clinically relevant noise, and no detections were observed. Only three ICDs (7%) reported neither transient malfunction nor minor noise, withstanding direct radiation exposure. At immediate post-exposure interrogation, the ICDs that recorded major real-time malfunctions had VT/VF detections stored in the device memory. In none of the ICDs spontaneous changes in parameter settings were reported. Malfunctions occurred regardless of either 2-, 5- or 10-Gy photon beam exposure. Conclusions Transient electromagnetic interferences were observed in most of the contemporary ICDs during radiotherapy course, regardless of photon dose. To avoid potentially life-threatening ICD malfunctions such as pacing inhibition or inappropriate shock delivery, magnet application on the pocket site or ICD reprogramming to the asynchronous mode are still suggested in ICD patients ongoing even low energy radiotherapy exposure. Funding Acknowledgement Type of funding source: None


Sign in / Sign up

Export Citation Format

Share Document