Cross hybridization to Arabidopsis thaliana array reveals cold stress responsive genes in Lepidium latifolium

Author(s):  
Atul Grover ◽  
Sadhana Singh ◽  
Basant Ballabh Bhatt ◽  
Mohammad Nasim ◽  
Pramod Katara
2009 ◽  
Vol 32 (1) ◽  
pp. 205-210 ◽  
Author(s):  
Mohammad Aslam ◽  
Vimlendu B. Sinha ◽  
Rupesh K. Singh ◽  
Sivalingam Anandhan ◽  
Veena Pande ◽  
...  

Genome ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 141-155 ◽  
Author(s):  
H H Yan ◽  
J Mudge ◽  
D-J Kim ◽  
R C Shoemaker ◽  
D R Cook ◽  
...  

To gain insight into genomic relationships between soybean (Glycine max) and Medicago truncatula, eight groups of bacterial artificial chromosome (BAC) contigs, together spanning 2.60 million base pairs (Mb) in G. max and 1.56 Mb in M. truncatula, were compared through high-resolution physical mapping combined with sequence and hybridization analysis of low-copy BAC ends. Cross-hybridization among G. max and M. truncatula contigs uncovered microsynteny in six of the contig groups and extensive microsynteny in three. Between G. max homoeologous (within genome duplicate) contigs, 85% of coding and 75% of noncoding sequences were conserved at the level of cross-hybridization. By contrast, only 29% of sequences were conserved between G. max and M. truncatula, and some kilobase-scale rearrangements were also observed. Detailed restriction maps were constructed for 11 contigs from the three highly microsyntenic groups, and these maps suggested that sequence order was highly conserved between G. max duplicates and generally conserved between G. max and M. truncatula. One instance of homoeologous BAC contigs in M. truncatula was also observed and examined in detail. A sequence similarity search against the Arabidopsis thaliana genome sequence identified up to three microsyntenic regions in A. thaliana for each of two of the legume BAC contig groups. Together, these results confirm previous predictions of one recent genome-wide duplication in G. max and suggest that M. truncatula also experienced ancient large-scale genome duplications.Key words: Glycine max, Medicago truncatula, Arabidopsis thaliana, conserved microsynteny, genome duplication.


2007 ◽  
Vol 48 (6) ◽  
pp. 856-865 ◽  
Author(s):  
Ana Rita Matos ◽  
Cécile Hourton-Cabassa ◽  
Dominique Ciçek ◽  
Nathalie Rezé ◽  
Joao Daniel Arrabaça ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1367
Author(s):  
Ming Jiang ◽  
Long-Long Ma ◽  
Huai-An Huang ◽  
Shan-Wen Ke ◽  
Chun-Sheng Gui ◽  
...  

Stylosanthes (stylo) species are commercially significant tropical and subtropical forage and pasture legumes that are vulnerable to chilling and frost. However, little is known about the molecular mechanisms behind stylos’ responses to low temperature stress. Gretchen-Hagen 3 (GH3) proteins have been extensively investigated in many plant species for their roles in auxin homeostasis and abiotic stress responses, but none have been reported in stylos. SgGH3.1, a cold-responsive gene identified in a whole transcriptome profiling study of fine-stem stylo (S. guianensis var. intermedia) was further investigated for its involvement in cold stress tolerance. SgGH3.1 shared a high percentage of identity with 14 leguminous GH3 proteins, ranging from 79% to 93%. Phylogenetic analysis classified SgGH3.1 into Group Ⅱ of GH3 family, which have been proven to involve with auxins conjugation. Expression profiling revealed that SgGH3.1 responded rapidly to cold stress in stylo leaves. Overexpression of SgGH3.1 in Arabidopsis thaliana altered sensitivity to exogenous IAA, up-regulated transcription of AtCBF1-3 genes, activated physiological responses against cold stress, and enhanced chilling and cold tolerances. This is the first report of a GH3 gene in stylos, which not only validated its function in IAA homeostasis and cold responses, but also gave insight into breeding of cold-tolerant stylos.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1706
Author(s):  
Mei Yang ◽  
Xinhang Duan ◽  
Zhaoyu Wang ◽  
Hang Yin ◽  
Junrui Zang ◽  
...  

Voltage-dependent anion channels (VDACs) are highly conserved proteins that are involved in the translocation of tRNA and play a key role in modulating plant senescence and multiple pathways. However, the functions of VDACs in plants are still poorly understood. Here, a novel VDAC gene was isolated and identified from alfalfa (Medicago sativa L.). MsVDAC localized to the mitochondria, and its expression was highest in alfalfa roots and was induced in response to cold, drought and salt treatment. Overexpression of MsVDAC in tobacco significantly increased MDA, GSH, soluble sugars, soluble protein and proline contents under cold and drought stress. However, the activities of SOD and POD decreased in transgenic tobacco under cold stress, while the O2− content increased. Stress-responsive genes including LTP1, ERD10B and Hxk3 were upregulated in the transgenic plants under cold and drought stress. However, GAPC, CBL1, BI-1, Cu/ZnSOD and MnSOD were upregulated only in the transgenic tobacco plants under cold stress, and GAPC, CBL1, and BI-1 were downregulated under drought stress. These results suggest that MsVDAC provides cold tolerance by regulating ROS scavenging, osmotic homeostasis and stress-responsive gene expression in plants, but the improved drought tolerance via MsVDAC may be mainly due to osmotic homeostasis and stress-responsive genes.


2020 ◽  
Vol 103 (3) ◽  
pp. 303-320 ◽  
Author(s):  
Sylvia Illgen ◽  
Stefanie Zintl ◽  
Ellen Zuther ◽  
Dirk K. Hincha ◽  
Thomas Schmülling

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jan Erik Leuendorf ◽  
Manuel Frank ◽  
Thomas Schmülling

Plant Science ◽  
2009 ◽  
Vol 176 (5) ◽  
pp. 678-686 ◽  
Author(s):  
Seungwon Choi ◽  
Ye Rim Kwon ◽  
Md. Aktar Hossain ◽  
Suk-Whan Hong ◽  
Byeong-ha Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document