Operating conditions monitoring of vehicle internal combustion engine waste heat utilization systems based on support vector machines

Author(s):  
Jianhua Zhang ◽  
Shuanglu Song ◽  
Pansheng Wang ◽  
Mingyue Ning ◽  
Xuan Yin
Author(s):  
José Galindo ◽  
Antonio Gil ◽  
Vicente Dolz ◽  
Alberto Ponce-Mora

Abstract In the present paper, a numerical investigation of a jet-ejector is carried out using a real gas model of R1234yf. The prototype under investigation works with specific operating conditions of a jet-ejector refrigeration system intended for waste heat recovery in an internal combustion engine (ICE). In the first instance, the geometry optimization involving nozzle exit diameter, mixing chamber diameter, and nozzle exit position (NXP) is performed. Once the optimum geometry has been obtained, the jet-ejector prototype is tested with different operating pressure ratios to determine its off-design performance. The flow structure in relevant cases has been examined with an emphasis on critical and subcritical modes. The flow phenomena occurring during expansion, entrainment, and mixing processes are discussed so performance degradation can be directly related to physical processes. The analysis has been completed fitting simulated points to critical and subcritical planar surfaces. The results in terms of goodness of fit are satisfactory so the jet-ejector performance in off-design operating conditions can be reflected through simple mathematic models. When the overall cycle is assessed by using previous computational fluid dynamics (CFD) maps, it is observed that the achievable cooling drops significantly when an ambient temperature of 31 °C is exceeded.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3966
Author(s):  
Jarosław Mamala ◽  
Michał Śmieja ◽  
Krzysztof Prażnowski

The market demand for vehicles with reduced energy consumption, as well as increasingly stringent standards limiting CO2 emissions, are the focus of a large number of research works undertaken in the analysis of the energy consumption of cars in real operating conditions. Taking into account the growing share of hybrid drive units on the automotive market, the aim of the article is to analyse the total unit energy consumption of a car operating in real road conditions, equipped with an advanced hybrid drive system of the PHEV (plug-in hybrid electric vehicles) type. In this paper, special attention has been paid to the total unit energy consumption of a car resulting from the cooperation of the two independent power units, internal combustion and electric. The results obtained for the individual drive units were presented in the form of a new unit index of the car, which allows us to compare the consumption of energy obtained from fuel with the use of electricity supported from the car’s batteries, during journeys in real road conditions. The presented research results indicate a several-fold increase in the total unit energy consumption of a car powered by an internal combustion engine compared to an electric car. The values of the total unit energy consumption of the car in real road conditions for the internal combustion drive are within the range 1.25–2.95 (J/(kg · m)) in relation to the electric drive 0.27–1.1 (J/(kg · m)) in terms of instantaneous values. In terms of average values, the appropriate values for only the combustion engine are 1.54 (J/(kg · m)) and for the electric drive only are 0.45 (J/(kg · m)) which results in the internal combustion engine values being 3.4 times higher than the electric values. It is the combustion of fuel that causes the greatest increase in energy supplied from the drive unit to the car’s propulsion system in the TTW (tank to wheels) system. At the same time this component is responsible for energy losses and CO2 emissions to the environment. The results were analysed to identify the differences between the actual life cycle energy consumption of the hybrid powertrain and the WLTP (Worldwide Harmonized Light-Duty Test Procedure) homologation cycle.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Wail Aladayleh ◽  
Ali Alahmer

This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.


2021 ◽  
Author(s):  
Thiago Ebel ◽  
Mark Anderson ◽  
Parth Pandya ◽  
Mat Perchanok ◽  
Nick Tiney ◽  
...  

Abstract When developing a turbocharged internal combustion engine, the choice of turbocharger is usually based on designer experience and existing hardware. However, proper turbocharger design relies on matching the compressor and turbine performance to the engine requirements so that parameters such as boost and back pressure, compressor pressure ratio, and turbine inlet temperatures meet the needs of the engine without exceeding its allowable operating envelope. Therefore, the ultimate measure of a successful turbocharger design is how well it is matched to an engine across various operating conditions. This, in turn, determines whether a new turbocharger is required, or an existing solution can be used. When existing turbocharger solutions are not viable, the engine designer is at a loss on how to define a new turbocharger that meets the desired performance requirements. A common approach in industry has been to scale the performance of an existing turbocharger (compressor and turbine maps) and take these requirements for Original Equipment Manufacturers to possibly match it with a real machine. However, the assumptions made in a basic scaling process are quite simplistic and generally not satisfactory in this situation. A better approach would be to use a validated meanline model for a compressor and turbine instead, allowing to perform an actual preliminary design of such components. Such approach allows to link the engine performance requirements in a very early stage of te component design project and it guides the designer for the design decisions, such as rotor size, variable geometry nozzles, diameter, or shroud trims and others. Therefore, a feasible solution is more likely with design less iterations. This paper describes a methodology for an integrated approach to design and analyze a turbocharged internal combustion engine using commercially available state-of-the-art 1D gas dynamics simulation tool linked to two powerful turbomachinery meanline programs. The outputs of this analysis are detailed performance data of the engine and turbocharger at different engine operating conditions. Two case studies are then presented for a 10-liter diesel truck engine. The first study demonstrates how the programs are used to evaluate an existing engine and reverse engineer an existing turbocharger based only on the available performance maps. Then a second study is done using a similar approach but redesigning a new turbocharger (based on the reverse engineered one) for an increased torque output of the same engine.


2019 ◽  
Vol 181 ◽  
pp. 414-424 ◽  
Author(s):  
German J. Amador Diaz ◽  
Juan P. Gómez Montoya ◽  
Lesme A. Corredor Martinez ◽  
Daniel B. Olsen ◽  
Adalberto Salazar Navarro

Author(s):  
Manuel Jiménez-Arreola ◽  
Fabio Dal Magro ◽  
Alessandro Romagnoli ◽  
Meng Soon Chiong ◽  
Srithar Rajoo ◽  
...  

Waste heat recovery is seen as one of the key enablers in achieving powertrain of high efficiency. The exhaust waste heat from an internal combustion engine (ICE) is known to be nearly equivalent to its brake power. Any energy recovered from the waste heat, which otherwise would be discarded, may directly enhance the overall thermal efficiency of a powertrain. Rankine cycle (indirect-recovery method) has been a favorable mean of waste heat recovery due to its rather high power density yet imposing significantly lesser back pressure to the engine compared to a direct-recovery method. This paper presents the analytical investigation of a thermal-supercharged ICE compounded with Rankine cycle. This system removes the turbocharger turbine to further mitigate the exhaust back pressure to the engine, and the turbocharger compressor is powered by the waste heat recovered from the exhaust stream. Extra caution has been taken when exchanging the in/output parameters between the engine and Rankine cycle model to have a more realistic predictions. Such configuration improves the engine BSFC performance by 2.4–3.9%. Water, Benzene and R245fa are found to be equally good choice of working fluid for the Rankine cycle, and can further advance the BSFC performance by 4.0–4.8% despite running at minimum pressure setting. The off-design analyses suggested the operating pressure of Rankine cycle and its expander efficiency have the largest influence to the gross system performance.


Sign in / Sign up

Export Citation Format

Share Document