A robustness analysis of eukaryotic cell cycle concerning Cdc25 and wee1 proteins

Author(s):  
Takehito Azuma ◽  
Hisao Moriya ◽  
Hayato Matsumuro ◽  
Hiroaki Kitano
2001 ◽  
Vol 114 (10) ◽  
pp. 1811-1820 ◽  
Author(s):  
M.E. Miller ◽  
F.R. Cross

Cyclin-dependent kinase (CDK) activity is essential for eukaryotic cell cycle events. Multiple cyclins activate CDKs in all eukaryotes, but it is unclear whether multiple cyclins are really required for cell cycle progression. It has been argued that cyclins may predominantly act as simple enzymatic activators of CDKs; in opposition to this idea, it has been argued that cyclins might target the activated CDK to particular substrates or inhibitors. Such targeting might occur through a combination of factors, including temporal expression, protein associations, and subcellular localization.


2005 ◽  
Vol 13 (3) ◽  
pp. 103-110 ◽  
Author(s):  
Jean-Philippe Nougayrède ◽  
Frédéric Taieb ◽  
Jean De Rycke ◽  
Eric Oswald

1992 ◽  
Vol 20 (2) ◽  
pp. 239-242 ◽  
Author(s):  
Paul Nurse

2016 ◽  
Vol 23 (6) ◽  
pp. 1490-1497 ◽  
Author(s):  
Ian Robinson ◽  
Yang Yang ◽  
Fucai Zhang ◽  
Christophe Lynch ◽  
Mohammed Yusuf ◽  
...  

Scanning X-ray fluorescence microscopy has been used to probe the distribution of S, P and Fe within cell nuclei. Nuclei, which may have originated at different phases of the cell cycle, are found to show very different levels of Fe present with a strongly inhomogeneous distribution. P and S signals, presumably from DNA and associated nucleosomes, are high and relatively uniform across all the nuclei; these agree with X-ray phase contrast projection microscopy images of the same samples. Possible reasons for the Fe incorporation are discussed.


Author(s):  
Ruben Perez-Carrasco ◽  
Casper Beentjes ◽  
Ramon Grima

AbstractMany models of gene expression do not explicitly incorporate a cell cycle description. Here we derive a theory describing how mRNA fluctuations for constitutive and bursty gene expression are influenced by stochasticity in the duration of the cell cycle and the timing of DNA replication. Analytical expressions for the moments show that omitting cell cycle duration introduces an error in the predicted mean number of mRNAs that is a monotonically decreasing function of η, which is proportional to the ratio of the mean cell cycle duration and the mRNA lifetime. By contrast, the error in the variance of the mRNA distribution is highest for intermediate values of η consistent with genome-wide measurements in many organisms. Using eukaryotic cell data, we estimate the errors in the mean and variance to be at most 3% and 25%, respectively. Furthermore, we derive an accurate negative binomial mixture approximation to the mRNA distribution. This indicates that stochasticity in the cell cycle can introduce fluctuations in mRNA numbers that are similar to the effect of bursty transcription. Finally, we show that for real experimental data, disregarding cell cycle stochasticity can introduce errors in the inference of transcription rates larger than 10%.


Life ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Vic Norris

A paradigm shift in one field can trigger paradigm shifts in other fields. This is illustrated by the paradigm shifts that have occurred in bacterial physiology following the discoveries that bacteria are not unstructured, that the bacterial cell cycle is not controlled by the dynamics of peptidoglycan, and that the growth rates of bacteria in the same steady-state population are not at all the same. These paradigm shifts are having an effect on longstanding hypotheses about the regulation of the bacterial cell cycle, which appear increasingly to be inadequate. I argue that, just as one earthquake can trigger others, an imminent paradigm shift in the regulation of the bacterial cell cycle will have repercussions or “paradigm quakes” on hypotheses about the origins of life and about the regulation of the eukaryotic cell cycle.


2005 ◽  
Vol 16 (5) ◽  
pp. 2129-2138 ◽  
Author(s):  
Frederick R. Cross ◽  
Lea Schroeder ◽  
Martin Kruse ◽  
Katherine C. Chen

Regulation of cyclin abundance is central to eukaryotic cell cycle control. Strong overexpression of mitotic cyclins is known to lock the system in mitosis, but the quantitative behavior of the control system as this threshold is approached has only been characterized in the in vitro Xenopus extract system. Here, we quantitate the threshold for mitotic block in budding yeast caused by constitutive overexpression of the mitotic cyclin Clb2. Near this threshold, the system displays marked loss of robustness, in that loss or even heterozygosity for some regulators becomes deleterious or lethal, even though complete loss of these regulators is tolerated at normal cyclin expression levels. Recently, we presented a quantitative kinetic model of the budding yeast cell cycle. Here, we use this model to generate biochemical predictions for Clb2 levels, asynchronous as well as through the cell cycle, as the Clb2 overexpression threshold is approached. The model predictions compare well with biochemical data, even though no data of this type were available during model generation. The loss of robustness of the Clb2 overexpressing system is also predicted by the model. These results provide strong confirmation of the model's predictive ability.


Sign in / Sign up

Export Citation Format

Share Document