Simulation study of a vibration isolation system with nonlinear damping implemented by an MR damper

Author(s):  
Carmen Ho ◽  
Zi-qiang Lang ◽  
Stephen A. Billings ◽  
Bogdan Sapinski
2017 ◽  
Vol 24 (18) ◽  
pp. 4247-4259 ◽  
Author(s):  
S M Mahdi Mofidian ◽  
Hamzeh Bardaweel

Undesired oscillations commonly encountered in engineering practice can be harmful to structures and machinery. Vibration isolation systems are used to attenuate undesired oscillations. Recently, there has been growing interest in nonlinear approaches towards vibration isolation systems design. This work is focused on investigating the effect of nonlinear cubic viscous damping in a vibration isolation system consisting of a magnetic spring with a positive nonlinear stiffness, and a mechanical oblique spring with geometric nonlinear negative stiffness. Dynamic model of the vibration isolation system is obtained and the harmonic balance method (HBM) is used to solve the governing dynamic equation. Additionally, fourth order Runge–Kutta numerical simulation is used to obtain displacement transmissibility of the system under investigation. Results obtained from numerical simulation are in good agreement with those obtained using HBM. Results show that introducing nonlinear damping improves the performance of the vibration isolation system. Nonlinear damping purposefully introduced into the described vibration isolation system appears to eliminate undesired frequency jump phenomena traditionally encountered in quasi-zero-stiffness vibration isolation systems. Compared to its rival linear vibration isolation system, the described nonlinear system transmits less vibrations around resonant peak. At lower frequencies, both nonlinear and linear isolation systems show comparable transmissibility characteristics.


Author(s):  
S. M. Mahdi Mofidian ◽  
Hamzeh Bardaweel

In this work, the effect of nonlinear damping in presence of geometric nonlinearities and magnetic stiffness nonlinearities in vibration isolation system is investigated. The dynamic behavior of the isolation system design is modeled. Harmonic Balance Method (HBM) is used to investigate the dynamic behavior of the vibration isolation system in response to sinusoidal input waveform. Results obtained using the HBM are compared to the results from numerical simulation attained using Runge-kutta method. Results show that introducing nonlinear viscous damping into the vibration isolation system suppresses frequency jump phenomena observed in Duffing-type vibration isolation systems. Additionally, results show that nonlinear damping can suppress transmissibility around resonant peak. For frequencies lower than resonant frequency the effect of nonlinear damping is minimum compared to a linear isolation system. Beyond resonant frequency higher nonlinear damping may slightly alter transmissibility of the isolation system.


2011 ◽  
Vol 328-330 ◽  
pp. 2190-2193
Author(s):  
Zhao Wang Xia ◽  
Xiao Min Qi ◽  
Hua Bing Wen

This work presents a test model of a vibration isolation system with magneto-rheological (MR) damper, and the Bingham model to describe the dynamic process of mechanical response for the MR damper. The analytical solution of the system in passive control is obtained via the averaging method, and verified numerically. The parameters which affect the performance of the vibration isolation are adjusted appropriately; the effects of the parameter are quantitatively or qualitatively analyzed.The proposed model utilizes a method that can be employed in a variety of dynamic systems. Moreover, the model parameters have direct physical significance to the MRF damper properties.


2021 ◽  
pp. 107754632110005
Author(s):  
Yonglei Zhang ◽  
Guo Wei ◽  
Hao Wen ◽  
Dongping Jin ◽  
Haiyan Hu

The vibration isolation system using a pair of oblique springs or a spring-rod mechanism as a negative stiffness mechanism exhibits a high-static low-dynamic stiffness characteristic and a nonlinear jump phenomenon when the system damping is light and the excitation amplitude is large. It is possible to remove the jump via adjusting the end trajectories of the above springs or rods. To realize this idea, the article presents a vibration isolation system with a cam–roller–spring–rod mechanism and gives the detailed numerical and experimental studies on the effects of the above mechanism on the vibration isolation performance. The comparative studies demonstrate that the vibration isolation system proposed works well and outperforms some other vibration isolation systems.


Sign in / Sign up

Export Citation Format

Share Document