Displacement transmissibility evaluation of vibration isolation system employing nonlinear-damping and nonlinear-stiffness elements

2017 ◽  
Vol 24 (18) ◽  
pp. 4247-4259 ◽  
Author(s):  
S M Mahdi Mofidian ◽  
Hamzeh Bardaweel

Undesired oscillations commonly encountered in engineering practice can be harmful to structures and machinery. Vibration isolation systems are used to attenuate undesired oscillations. Recently, there has been growing interest in nonlinear approaches towards vibration isolation systems design. This work is focused on investigating the effect of nonlinear cubic viscous damping in a vibration isolation system consisting of a magnetic spring with a positive nonlinear stiffness, and a mechanical oblique spring with geometric nonlinear negative stiffness. Dynamic model of the vibration isolation system is obtained and the harmonic balance method (HBM) is used to solve the governing dynamic equation. Additionally, fourth order Runge–Kutta numerical simulation is used to obtain displacement transmissibility of the system under investigation. Results obtained from numerical simulation are in good agreement with those obtained using HBM. Results show that introducing nonlinear damping improves the performance of the vibration isolation system. Nonlinear damping purposefully introduced into the described vibration isolation system appears to eliminate undesired frequency jump phenomena traditionally encountered in quasi-zero-stiffness vibration isolation systems. Compared to its rival linear vibration isolation system, the described nonlinear system transmits less vibrations around resonant peak. At lower frequencies, both nonlinear and linear isolation systems show comparable transmissibility characteristics.

Author(s):  
S. M. Mahdi Mofidian ◽  
Hamzeh Bardaweel

In this work, the effect of nonlinear damping in presence of geometric nonlinearities and magnetic stiffness nonlinearities in vibration isolation system is investigated. The dynamic behavior of the isolation system design is modeled. Harmonic Balance Method (HBM) is used to investigate the dynamic behavior of the vibration isolation system in response to sinusoidal input waveform. Results obtained using the HBM are compared to the results from numerical simulation attained using Runge-kutta method. Results show that introducing nonlinear viscous damping into the vibration isolation system suppresses frequency jump phenomena observed in Duffing-type vibration isolation systems. Additionally, results show that nonlinear damping can suppress transmissibility around resonant peak. For frequencies lower than resonant frequency the effect of nonlinear damping is minimum compared to a linear isolation system. Beyond resonant frequency higher nonlinear damping may slightly alter transmissibility of the isolation system.


2021 ◽  
pp. 107754632110005
Author(s):  
Yonglei Zhang ◽  
Guo Wei ◽  
Hao Wen ◽  
Dongping Jin ◽  
Haiyan Hu

The vibration isolation system using a pair of oblique springs or a spring-rod mechanism as a negative stiffness mechanism exhibits a high-static low-dynamic stiffness characteristic and a nonlinear jump phenomenon when the system damping is light and the excitation amplitude is large. It is possible to remove the jump via adjusting the end trajectories of the above springs or rods. To realize this idea, the article presents a vibration isolation system with a cam–roller–spring–rod mechanism and gives the detailed numerical and experimental studies on the effects of the above mechanism on the vibration isolation performance. The comparative studies demonstrate that the vibration isolation system proposed works well and outperforms some other vibration isolation systems.


2013 ◽  
Vol 397-400 ◽  
pp. 295-303 ◽  
Author(s):  
Fu Niu ◽  
Ling Shuai Meng ◽  
Wen Juan Wu ◽  
Jing Gong Sun ◽  
Wei Hua Su ◽  
...  

The quasi-zero-stiffness vibration isolation system has witnessed significant development due to the pressing demands for low frequency and ultra-low frequency vibration isolation. In this study, the isolation theory and the characteristic of the quasi-zero-stiffness vibration isolation system are illustrated. Based on its implementation mechanics, a comprehensive assessment of recent advances of the quasi-zero-stiffness vibration isolation system is presented. The future research directions are finally prospected.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Zeqi Lu ◽  
Tiejun Yang ◽  
Michael J. Brennan ◽  
Xinhui Li ◽  
Zhigang Liu

Linear single-stage vibration isolation systems have a limitation on their performance, which can be overcome passively by using linear two-stage isolations systems. It has been demonstrated by several researchers that linear single-stage isolation systems can be improved upon by using nonlinear stiffness elements, especially for low-frequency vibrations. In this paper, an investigation is conducted into whether the same improvements can be made to a linear two-stage isolation system using the same methodology for both force and base excitation. The benefits of incorporating geometric stiffness nonlinearity in both upper and lower stages are studied. It is found that there are beneficial effects of using nonlinearity in the stiffness in both stages for both types of excitation. Further, it is found that this nonlinearity causes the transmissibility at the lower resonance frequency to bend to the right, but the transmissibility at the higher resonance frequency is not affected in the same way. Generally, it is found that a nonlinear two-stage system has superior isolation performance compared to that of a linear two-stage isolator.


2021 ◽  
Author(s):  
Xiaoying Hu ◽  
Chunyan Zhou

Abstract Nonlinear Quasi-zero-stiffness (QZS) vibration isolation systems with linear damping cannot lead to displacement isolation with different excitation levels. In this study, a QZS system with nonlinear hysteretic damping was investigated. The Duffing-Ueda equation with a coupling nonlinear parameter 𝜂 was proposed to describe the dynamic motion of the QZS system. By using the harmonic balance method (HBM), the primary and secondary harmonic responses were obtained and verified by numerical simulations. The results indicated that nonlinear damping can guarantee a bounded response for different excitation levels. The one-third subharmonic response was found to affect the isolation frequency range even when the primary response was stable. To evaluate the performance of the QZS system, the effective isolation frequency Ω𝑒 and maximum transmissibility 𝑇𝑝 were proposed to represent the vibration isolation range and isolation effect, respectively. By discussing the effect of 𝜂 on Ω𝑒 and 𝑇𝑝, the conditions to avoid nonlinear phenomena and improve the isolation performance are provided. A prototype of the QZS system was then constructed for vibration tests, which verified the theoretical analysis.


Author(s):  
V.V. Kovalev ◽  

At the present, the improvement of vibration isolation systems for equipment, machines and units remains an urgent task. The ways to solve this problem are based on the optimization of existing structures, the development and application of new vibration-insulating elements as well as the improvement of design methods. In particular, to ensure the reliable functioning of agricultural machines, units, working elements and other mechanization means for the technological processes of agricultural production one of the perspective areas is the use of hydraulic vibra-tion mounts in suspension systems for units. This type of mounts is used to mount engines, cabins of agricultural vehicles, and power units. This paper discusses the simu-lation of the dynamic behavior of a power unit attached to a fixed base by the hydraulic mounts. It is proposed to use approximating functions modelling real stiffness character-istics of the mounts. A comparative analysis with a similar design using rubber-metal mounts as vibration-insulating elements is presented.


Author(s):  
Hideya Yamaguchi ◽  
Hidehisa Yoshida

A passive vibration isolation system consisting of a constant friction force has performance limitations; the isolation performance declines and the residual displacement becomes large in the case of the large friction force, while the resonant peak becomes large in the case of the small friction force. It is known that above drawbacks are avoidable when the friction force varies in proportion to the relative displacement. Recently, authors have proposed a simple linear friction damper mechanism that consists of a cylindrical block and a tilt lever supported with a pivot or a leaf spring. Performance of the vibration isolation system equipped with the proposed damper is investigated, and its effectiveness is confirmed by numerical simulations and the experiments. However, the motion of the mechanism is limited to one-dimension. This paper proposes an extended mechanism that can be applied to motion moving in two dimensions by combining the concave cone and the cylindrical member. The concave cone is supported with a universal joint on the apex side and its tilting motion is constrained by the restoring spring. The rounded edge of the cylindrical member is set up to contact the inside flank of the concave cone. When the cylindrical member moves in an arbitrary direction on the planar floor and pushes the concave cone, the normal and friction forces at the contact point vary depending on the displacement of the cylindrical member. The fundamental property and the performance of the proposed mechanism are investigated by numerical simulations and experiments.


Author(s):  
Md. Emdadul Hoque ◽  
Takeshi Mizuno ◽  
Yuji Ishino ◽  
Masaya Takasaki

A vibration isolation system is presented in this paper which is developed by the combination of multiple vibration isolation modules. Each module is fabricated by connecting a positive stiffness suspension in series with a negative stiffness suspension. Each vibration isolation module can be considered as a self-sufficient single-degree-of-freedom vibration isolation system. 3-DOF vibration isolation system can be developed by combining three modules. As the number of motions to be controlled and the number of actuators are equal, there is no redundancy in actuators in such vibration isolation systems. Experimental results are presented to verify the proposed concept of the development of MDOF vibration isolation system using vibration isolation modules.


Author(s):  
Jing-Jing Wang ◽  
Shi-Jian Zhu ◽  
Shu-Yong Liu

The chaotic response and mechanism for line spectrum reduction in nonlinear vibration isolation system are studied. The harmonic balance method is applied to uncover the interaction between different harmonics. It is clear that the considerable energy transfers from the fundamental harmonic to the others by the nonlinear interactions, and thus the energy at the dominant frequency is reduced greatly. When the nonlinear vibration isolation system is in a chaotic state, the response is characteristic of the broadband spectrum, and thus the energy is distributed to all the frequency components. Chaotic attractor is different from the point, limit cycle and so on, and the fractal dimension can be applied to describe its characteristic. Furthermore, the chaotic signal is distinguished from the random one by the saturation of the correlation dimension. The former approaches to saturation with the increasing embedding dimension, but the latter does not. The phase space reconstruction based on wavelet transform can achieve the study of both the geometry and frequency characteristics of the chaos, so that provides a new way to study chaotic response.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ze-Qi Lu ◽  
Dong Shao ◽  
Hu Ding ◽  
Li-Qun Chen

The manuscript concerns the power flow characterization in a two-stage nonlinear vibration isolator comprising three springs, which are configured so that each stage of the system has a high-static-low-dynamic stiffness. To demonstrate the distinction of evaluation for vibration isolation using power flow, force transmissibility is used for comparison. The dynamic behavior of the isolator subject to harmonic excitation, however, is of interest here. The harmonic balance method (HBM) could be used to analyze the frequency response curve (FRC) of the strong nonlinear vibration system. A suggested stability analysis to distinguish the stable and the unstable HBM solutions is described. Increasing both upper and lower nonlinear stiffness could bend the first resonant peak to the left. The isolation range in the power and the force transmissibility plot could be extended to the lower frequencies when the nonlinear stiffness is increased, but the rate of roll-off for the power transmissibility is twice the rate for the force transmissibility at each horizontal stiffness setting. An explanation for this phenomenon is given in the paper.


Sign in / Sign up

Export Citation Format

Share Document