Optimization of Parking Space Allocation for Automated Parking System of Paternoster Type by Genetic Algorithm

Author(s):  
Mingjun Zou ◽  
Qing Wang ◽  
Shu-an Liu
2021 ◽  
pp. 1-10
Author(s):  
Qi Liu ◽  
Ye Zhang ◽  
Ying Wang ◽  
Jiaojiao Xu ◽  
Ze Ye ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6401
Author(s):  
Kateryna Czerniachowska ◽  
Karina Sachpazidu-Wójcicka ◽  
Piotr Sulikowski ◽  
Marcin Hernes ◽  
Artur Rot

This paper discusses the problem of retailers’ profit maximization regarding displaying products on the planogram shelves, which may have different dimensions in each store but allocate the same product sets. We develop a mathematical model and a genetic algorithm for solving the shelf space allocation problem with the criteria of retailers’ profit maximization. The implemented program executes in a reasonable time. The quality of the genetic algorithm has been evaluated using the CPLEX solver. We determine four groups of constraints for the products that should be allocated on a shelf: shelf constraints, shelf type constraints, product constraints, and virtual segment constraints. The validity of the developed genetic algorithm has been checked on 25 retailing test cases. Computational results prove that the proposed approach allows for obtaining efficient results in short running time, and the developed complex shelf space allocation model, which considers multiple attributes of a shelf, segment, and product, as well as product capping and nesting allocation rule, is of high practical relevance. The proposed approach allows retailers to receive higher store profits with regard to the actual merchandising rules.


2021 ◽  
Vol 11 (2) ◽  
pp. 855
Author(s):  
Mingkang Wu ◽  
Haobin Jiang ◽  
Chin-An Tan

As fully automated valet parking systems are being developed, there is a transition period during which both human-operated vehicles (HVs) and autonomous vehicles (AVs) are present in the same parking infrastructure. This paper addresses the problem of allocation of a parking space to an AV without conflicting with the parking space chosen by the driver of a HV. A comprehensive assessment of the key factors that affect the preference and choice of a driver for a parking space is established by the fuzzy comprehensive method. The algorithm then generates a ranking order of the available parking spaces to first predict the driver’s choice of parking space and then allocate a space for the AV. The Floyd algorithm of shortest distance is used to determine the route for the AV to reach its parking space. The proposed allocation and search algorithm is applied to the examples of a parking lot with three designed scenarios. It is shown that parking space can be reasonably allocated for AVs.


2012 ◽  
Vol 25 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Rashmi Deka ◽  
Soma Chakraborty ◽  
Sekhar Roy

Spectrum availability is becoming scarce due to the rise of number of users and rapid development in wireless environment. Cognitive radio (CR) is an intelligent radio system which uses its in-built technology to use the vacant spectrum holes for the use of another service provider. In this paper, genetic algorithm (GA) is used for the best possible space allocation to cognitive radio in the spectrum available. For spectrum reuse, two criteria have to be fulfilled - 1) probability of detection has to be maximized, and 2) probability of false alarm should be minimized. It is found that with the help of genetic algorithm the optimized result is better than without using genetic algorithm. It is necessary that the secondary user should vacate the spectrum in use when licensed users are demanding and detecting the primary users accurately by the cognitive radio. Here, bit error rate (BER) is minimized for better spectrum sensing purpose using GA.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2793-2798 ◽  

Nowadays, smart parking guidance system is a crucial research for people’s convenience where the integrating concept of IoT that include hardware and software with the connection of internet for image or video processing technology is a powerful application which made up a complete smart parking system. The main objective of this research is to develop and analyze on a smart parking guidance system where current available system was compared to this new proposed system. Limited parking space has become serious issue since the number of Malaysia’s populations are using car keep increasing. Some of the big companies, shopping malls and other public facilities already deployed a smart parking system on their building. However, there are still a lot of buildings that do not own it because the system required a lot of investment, where the huge parking areas need higher cost to install sensors on each parking lot available and cameras are costly and lower in reliability. The proposed smart parking guidance system in this research was depending on a 360° camera that was modified on Raspberry Pi camera module and 360o lens that process with De-Warping techniques for the normal view rather than 360-degree view and Haar-Cascade classifier. The image and video processing was done by Open CV and python program to detect the available parking space and cloud firebase was used to update data where users can access the parking space availability by android mobile phone specifically at a closed parking space. A single 360°camera was replaced several sensors and cameras which were implemented on traditional parking guidance system. In the end of the paper, it is proved that prototype based smart parking is the convenient way to find the parking space availability.


Author(s):  
Gamal Abd El-Nasser A. Said ◽  
El-Sayed M. El-Horbaty

Seaport container terminals are essential nodes in sea cargo transportation networks. In container terminal, one of the most important performance measures in container terminals is the service time. Storage space allocation operations contribute to minimizing the vessel service time. Storage space allocation problem at container terminals is a combinatorial optimization NP-hard problem. This chapter proposes a methodology based on Genetic Algorithm (GA) to optimize the solution for storage space allocation problem. A new mathematical model that reflects reality and takes into account the workload balance among different types of storage blocks to avoid bottlenecks in container yard operations is proposed. Also the travelling distance between vessels berthing positions and storage blocks at container yard is considered in this research. The proposed methodology is applied on a real case study data of container terminal in Egypt. The computational results show the effectiveness of the proposed methodology.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1476 ◽  
Author(s):  
Luis F. Luque-Vega ◽  
David A. Michel-Torres ◽  
Emmanuel Lopez-Neri ◽  
Miriam A. Carlos-Mancilla ◽  
Luis E. González-Jiménez

Humanity is currently experiencing one of the short periods of transition thanks to novel sensing solutions for smart cities that bring the future to today. Overpopulation of cities demands the development of solid strategic plannings that uses infrastructure, innovation, and technology to adapt to rapid changes. To improve mobility in cities with a larger and larger vehicle fleet, a novel sensing solution that is the cornerstone of a smart parking system, the smart vehicular presence sensor (SPIN-V, in its Spanish abbreviation), is presented. The SPIN-V is composed of a small single-board computer, distance sensor, camera, LED indicator, buzzer, and battery and devoted to obtain the status of a parking space. This smart mobility project involves three main elements, namely the SPIN-V, a mobile application, and a monitoring center, working together to monitor, control, process, and display the parking space information in real-time to the drivers. In addition, the design and implementation of the three elements of the complete architecture are presented.


2020 ◽  
Vol 33 (4) ◽  
pp. 250
Author(s):  
Yong Chen ◽  
Huang Xu ◽  
Guanlin Chen ◽  
Huajian Pang ◽  
Wujian Yang

Sign in / Sign up

Export Citation Format

Share Document