Improved Adaptive Feedback Scheduling Algorithm based on LATE in Hadoop Platform

Author(s):  
Jing Guo ◽  
Yong Wang
2014 ◽  
Vol 631-632 ◽  
pp. 761-765
Author(s):  
Jing Cun Bi ◽  
Qi Li ◽  
Wei Jun Yang ◽  
Yan Fei Liu

As for the aperiodic tasks of node in network control systems, the FC-ABS (Feedback Controlled Adaptive Bandwidth Server) scheduling algorithm is designed. The different scheduling methods are used according to time characteristics of aperiodic tasks, and feedback scheduling is used to mitigate the effect of aperiodic tasks on periodic tasks. The simulation results show that the method is effective. Keyword: Network Control Systems; Server Scheduling; Feedback Scheduling; FC-ABS.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Dezong Zhao ◽  
Qingqing Ding ◽  
Shangmin Zhang ◽  
Chunwen Li ◽  
Richard Stobart

This paper investigates the codesign of remote speed control and network scheduling for motion coordination of multiple induction motors through a shared communication network. An integrated feedback scheduling algorithm is designed to allocate the optimal sampling period and priority to each control loop to optimize the global performance of a networked control system (NCS), while satisfying the constraints of stability and schedulability. A speed synchronization method is incorporated into the scheduling algorithm to improve the speed synchronization performance of multiple induction motors. The rational gain of the network speed controllers is calculated using the Lyapunov theorem and tuned online by fuzzy logic to guarantee the robustness against complicated variations on the communication network. Furthermore, a state predictor is designed to compensate the time delay which occurred in data transmission from the sensor to the controller, as a part of the networked controller. Simulation results support the effectiveness of the proposed control-and-scheduling codesign approach.


Sign in / Sign up

Export Citation Format

Share Document