Electromagnetic compatibility characteristics of wireless LAN for indoor environment of buildings by FDTD method

Author(s):  
Y. Miyazaki ◽  
K. Takahashi
2020 ◽  
Vol 10 (7) ◽  
pp. 2359
Author(s):  
Sajad Mohammadi ◽  
Hamidreza Karami ◽  
Mohammad Azadifar ◽  
Farhad Rachidi

An open accelerator (OpenACC)-aided graphics processing unit (GPU)-based finite difference time domain (FDTD) method is presented for the first time for the 3D evaluation of lightning radiated electromagnetic fields along a complex terrain with arbitrary topography. The OpenACC directive-based programming model is used to enhance the computational performance, and the results are compared with those obtained by using a CPU-based model. It is shown that OpenACC GPUs can provide very accurate results, and they are more than 20 times faster than CPUs. The presented results support the use of OpenACC not only in relation to lightning electromagnetics problems, but also to large-scale realistic electromagnetic compatibility (EMC) applications in which computation time efficiency is a critical factor.


2011 ◽  
Vol 110-116 ◽  
pp. 971-976
Author(s):  
Hong You Wang ◽  
Jin Guang Li

Micro-strip line is a kind of transmission line that is the most widely used in microwave integrated circuit. With the development of microwave integrated circuits and the increasing work frequency of the micro-strip line, a higher requirement for its electromagnetic compatibility has been raised. Finite-Difference Time-Domain (FDTD) method has characteristics of good adaptability in the analysis of electromagnetic compatibility issues and superiority in complexity of the structure modeling. For these reasons, this Article uses FDTD method which is widely used in electromagnetic field calculation to analyze the time-domain of micro-strip line, calculates its current and voltage induced in ports and discuss the response feature under different radiation conditions.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 21020-21031 ◽  
Author(s):  
Sergei Shikhantsov ◽  
Arno Thielens ◽  
Gunter Vermeeren ◽  
Emmeric Tanghe ◽  
Piet Demeester ◽  
...  

2015 ◽  
Vol 4 (2) ◽  
pp. 17 ◽  
Author(s):  
N. Deymier ◽  
T. Volpert ◽  
X. Ferrieres ◽  
V. Mouysset ◽  
B. Pecqueux

In electromagnetic compatibility (EMC) context, we are interested in developing new ac- curate methods to solve efficiently and accurately Maxwell’s equations in the time domain. Indeed, usual methods such as FDTD or FVTD present im- portant dissipative and/or dispersive errors which prevent to obtain a good numerical approximation of the physical solution for a given industrial scene unless we use a mesh with a very small cell size. To avoid this problem, schemes like the Discontinuous Galerkin (DG) method, based on higher order spa- tial approximations, have been introduced and stud- ied on unstructured meshes. However the cost of this kind of method can become prohibitive accord- ing to the mesh used. In this paper, we first present a higher order spatial approximation method on carte- sian meshes. It is based on a finite element ap- proach and recovers at the order 1 the well-known Yee’s schema. Next, to deal with EMC problem, a non-oriented thin wire formalism is proposed for this method. Finally, several examples are given to present the benefits of this new method by compar- ison with both Yee’s schema and DG approaches.


2021 ◽  
Author(s):  
Bhaskar Gugulothu ◽  
Rajendra Naik Bhukya

Abstract In this paper, the Crosstalk noise analysis of coupled on-chip interconnects have been analyzed. The multiresolution time-domain method (MRTD) is used to analyze the crosstalk noise model. The crosstalk induced propagation time delay and crosstalk peak voltage on the victim line of interconnects have been determined and compared to those of the conventional finite difference time domain (FDTD) method and validated with HSPICE simulations at the 22nm technology node. The results of the proposed method shows that crosstalk induced propagation delay in dynamic in-phase, out-phase and peak voltage timing, as well as the peak voltage value for functional crosstalk in the copper interconnects are an average error of less than 0.53% for the proposed model and HSPICE simulations. The results of the proposed model are closely similar to those of HSPICE simulations. Electromagnetic interference and electromagnetic compatibility of on-chip interconnects can also be addressed using the proposed method.


Sign in / Sign up

Export Citation Format

Share Document