Novel design of a variable reluctance permanent magnet machine with bipolar coil flux-linkage

Author(s):  
Hui Yang ◽  
Heyun Lin ◽  
Z. Q. Zhu ◽  
Kaikai Guo ◽  
Shuhua Fang ◽  
...  
Author(s):  
S. M. N. S. Othman ◽  
M. F. Omar ◽  
S. K. Rahimi ◽  
E. Sulaiman

<span lang="EN-US">Segmental structure is common especially for a rotor in electrical motor. It is to reduce the cost of production, conveniently replace, and as a module where the sum of electromagnetic torque produced comes from each segmental stator add up together. Thus, in this paper will be focusing on the elementary analysis of a segmental stator for single phase 6Slot-12Pole and 3 phase 6Slot-15Pole Switched-Flux Permanent Magnet Machine (SFPMM) as the chosen design for analysis validation from coventional permanent magnet flux switching machine to a new segmental stator structure of SFPMM. It will be focusing on the initial design and to prove that it can be operate as a flux switching machine by implement a 2D Finite Element Analysis simulations such as a No-load analysis (flux linkage, cogging torque, back emf) and Load-analysis (average electromagnetic torque.  Elementary result shows that the electromagnetic torque produce for both design are 10.6 Nm and 99.95 Nm and proved that it can produce high torque although it does not surpass the conventional SFPMM. A further research and optimization will be needed to obtain a higher torque compared to conventional SFPMM.</span>


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3132 ◽  
Author(s):  
Minh-Trung Duong ◽  
Yon-Do Chun ◽  
Deok-Je Bang

In this paper, a modification of the dual-segment permanent magnet (PM) Halbach array is investigated to improve the performance of the tubular linear machine, in terms of flux density and output power. Instead of a classical Halbach array with only radial and axial PMs, the proposed model involves the insertion of mig-magnets, which have a magnetized angle shifted from the reference magnetized angles of axial and radial PMs. This structure leads to the elimination of flux leakage and the concentration of flux linkage in middle of the coil; therefore, the output power is increased by 13.2%.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1381-1389
Author(s):  
Dezhi Chen ◽  
Chengwu Diao ◽  
Zhiyu Feng ◽  
Shichong Zhang ◽  
Wenliang Zhao

In this paper, a novel dual-stator permanent magnet machine (DsPmSynM) with low cost and high torque density is designed. The winding part of the DsPmSynM adopts phase-group concentrated-coil windings, and the permanent magnets are arranged by spoke-type. Firstly, the winding structure reduces the amount of copper at the end of the winding. Secondly, the electromagnetic torque ripple of DsPmSynM is suppressed by reducing the cogging torque. Furthermore, the dynamic performance of DsPmSynM is studied. Finally, the experimental results are compared with the simulation results.


Sign in / Sign up

Export Citation Format

Share Document