Research for curing process of mica-containing epoxy resin-TOA system with dynamic dielectric spectroscopy

2003 ◽  
Author(s):  
Chen Ling ◽  
Liu Guiyun
Author(s):  
Yinjun Shi ◽  
Yushun Zhao ◽  
Wei Yang ◽  
Xin Chen ◽  
Yun Chen

1997 ◽  
Vol 49 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Susumu Tatsumiya ◽  
Katsumasa Yokokawa ◽  
Kyosuke Miki
Keyword(s):  

2017 ◽  
Vol 898 ◽  
pp. 2302-2308
Author(s):  
Jin Li Zhou ◽  
Shu Zhu ◽  
Wen Pin Jia ◽  
Chao Cheng ◽  
Elwathig A.M. Hassan ◽  
...  

In order to improve the toughness of epoxy resin, hydroxyl-terminated polyethersulfone (PES) with various amounts (0 wt.%, 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%) were added to bisphenol A epoxy resin (DER331)/ curing agent DETDA (E100) systems, and the influence of PES contents on curing process and heat-resistance was studied. Non-isothermal DSC was used to determine the curing process of uncured DER331/E100/PES systems at heating rate of 2°C/min, 5°C/min, 7°C/min, 10°C/min and 15°C/min separately, and the apparent activation energy was calculated based on Kissinger method. The morphology of the etched cured DER331/E100/PES systems with different PES contents was observed by SEM. The heat-resistance of these systems was investigated by DSC and TGA. The results showed that with the increasing of PES content the curing exothermic peak, the heat of curing reaction, the initial and final curing temperature all decreased at the first and then increased, indicating that when the PES content was low (5 wt.%, 10 wt.%), PES can facilitate the curing process, while, when PES content up to 15 wt.%, PES can prevent or weaken the curing reaction. SEM results indicated that the phase structure changed drastically depending on the PES content. The systems with 5 wt.% and 10 wt.% PES were epoxy-rich phase, with 15 wt.% PES was co-continuity phase, and with 20 wt.% PES showed complete phase inversion (PES rich phase). The glass transition temperature and thermo gravimetric analysis demonstrated that the addition of PES can increase the heat resistance of cured DER331/E100/PES systems.


2019 ◽  
Vol 292 ◽  
pp. 01025
Author(s):  
Michaela Mikuličová ◽  
Vladimír Vašek ◽  
Vojtěch Křesálek

In this paper, steady-state fluorescence spectroscopy is used to investigate the curing of two-component epoxy resin LG 285. Moreover, the process of curing is mathematically described. The mixture of resin and hardener HG 287 is measured at five different temperatures (50 °C, 60 °C, 70 °C, 80 °C and 90 °C) for five and a half hours. The results indicate that the process of curing of epoxy resin decelerates with time and accelerates with increasing temperature. Furthermore, the energy of the barrier is calculated.


RSC Advances ◽  
2020 ◽  
Vol 10 (55) ◽  
pp. 33576-33584
Author(s):  
Xuefeng Yan ◽  
Leilei Wu ◽  
Shanshan Jin ◽  
Wei Zhao ◽  
Haijian Cao ◽  
...  

Inorganic powders, SiO2 and Al2O3, were used as reinforcements and thermosetting epoxy resin was utilized as a matrix to manufacture IP/epoxy preform, which was coated on the surfaces of 2/1 twill woven polyethylene terephthalate fabrics before the final curing process.


Sign in / Sign up

Export Citation Format

Share Document