Curing process optimization and mechanical properties improvement of epoxy resin copolymer modified by epoxy-terminated hyperbranched polyether sulfone

Polymer ◽  
2022 ◽  
pp. 124535
Author(s):  
Tianyu Zhu ◽  
Chunxiang Lu ◽  
Xiaoxuan Lu ◽  
Jieying Zhi ◽  
Yingjun Song
Author(s):  
I.V. Terekhov ◽  
◽  
A.I. Tkachuk ◽  
K.I. Donetsky ◽  
R.Yu. Karavaev ◽  
...  

The paper considers the main physical and chemical and thermomechanical characteristics of the VSE-62 epoxy resin. The results of rheological tests of the developed resin in dynamic and isothermal modes, as well as the kinetic parameters of the curing process are presented. They help to determine the technological conditions for obtaining defect-free cured samples. The results of mechanical tests show that this resin’s system is characterized by high values of the glass transition temperature and good mechanical properties at test temperature of 120 °C. The absence of solvents in the composition of the VSE-62 epoxy resin and its low viscosity makes it possible to obtain high-strength materials with reduced porosity.


2021 ◽  
Vol 22 (1) ◽  
pp. 184-195
Author(s):  
Hyun-Seok Jung ◽  
Yonmin Park ◽  
Chang-Woon Nah ◽  
Jae-Chul Lee ◽  
Ki-Young Kim ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 1-15
Author(s):  
Sawsan Fakhry Halim ◽  
Said Sayed Gad El Kholy ◽  
HalaFikry Naguib ◽  
Riham Samir Hegazy ◽  
Nermen Mohamed Baheg

Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


1997 ◽  
Vol 49 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Susumu Tatsumiya ◽  
Katsumasa Yokokawa ◽  
Kyosuke Miki
Keyword(s):  

2021 ◽  
Vol 2 (2) ◽  
pp. 419-430
Author(s):  
Ankur Bajpai ◽  
James R. Davidson ◽  
Colin Robert

The tensile fracture mechanics and thermo-mechanical properties of mixtures composed of two kinds of epoxy resins of different chemical structures and functional groups were studied. The base resin was a bi-functional epoxy resin based on diglycidyl ether of bisphenol-A (DGEBA) and the other resins were (a) distilled triglycidylether of meta-amino phenol (b) 1, 6–naphthalene di epoxy and (c) fluorene di epoxy. This research shows that a small number of multifunctional epoxy systems, both di- and tri-functional, can significantly increase tensile strength (14%) over neat DGEBA while having no negative impact on other mechanical properties including glass transition temperature and elastic modulus. In fact, when compared to unmodified DGEBA, the tri-functional epoxy shows a slight increase (5%) in glass transition temperature at 10 wt.% concentration. The enhanced crosslinking of DGEBA (90 wt.%)/distilled triglycidylether of meta-amino phenol (10 wt.%) blends may be the possible reason for the improved glass transition. Finally, the influence of strain rate, temperature and moisture were investigated for both the neat DGEBA and the best performing modified system. The neat DGEBA was steadily outperformed by its modified counterpart in every condition.


Sign in / Sign up

Export Citation Format

Share Document