Direct Torque Control System of Permanent Magnet Synchronous Motor for Integrated Starter Generator of Hybrid Electric Vehicles

Author(s):  
Zhang Peijie ◽  
Tian Yantao ◽  
Gong Yimin
Author(s):  
Xiaoxin Hou ◽  
Mingqian Wang ◽  
Guodong You ◽  
Jinming Pan ◽  
Xiating Xu ◽  
...  

The traditional direct torque control system of permanent magnet synchronous motor has many problems, such as large torque ripple and variable switching frequency. In order to improve the dynamic and static performance of the control system, a new torque control idea and speed sensorless control scheme are proposed in this paper. First, by deriving the equation of torque change rate, an improved torque controller is designed to replace the torque hysteresis controller of the traditional direct torque control. The improved direct torque control strategy can significantly reduce the torque ripple and keep the switching frequency constant. Then, based on the improved direct torque control and considering the sensitivity of the stator resistance to temperature change, a speed estimator based on the model reference adaptive method is designed. This method realizes the stator resistance on-line identification and further improves the control precision of the system. The performance of the traditional direct torque control and the improved direct torque control are compared by simulation and experiment under different operating conditions. The simulation and experimental results are presented to support the validity and effectiveness of the proposed method.


2013 ◽  
Vol 341-342 ◽  
pp. 1013-1017
Author(s):  
Yi Ming Li ◽  
Wei Huang ◽  
Peng Jin ◽  
Jun Rong

According to the analysis of mathematical model for permanent magnet synchronous motor (PMSM), direct torque control(DTC) technology is introduced to the control system of PMSM. The paper builds dual-closed loop control system of PMSM, and the outer loop is speed loop, the inner loop is flux and torque loop, at the same time, the paper makes simulation in Matlab/Simulink. The simulation results show that the DTC technology significantly improves the dynamic performances of PMSM, and the control system is no overshoot, and has small flux response comparing with the conventional control methods of PMSM. So the application of DTC technology in PMSM provides a new thoughtful way for PMSM control system designing and debugging in actual application.


Author(s):  
Hanaa Elsherbiny ◽  
Mohamed Kamal Ahmed ◽  
Mahmoud Elwany

This paper presents a detailed analysis and comparative investigation for the torque control techniques of interior permanent magnet synchronous motor (IPMSM) for electric vehicles (EVs). The study involves the field-oriented control (FOC), direct torque control (DTC), and model predictive direct torque control (MPDTC) techniques. The control aims to achieve vehicle requirements that involve maximum torque per ampere (MTPA), minimum torque ripples, maximum efficiency, fast dynamics, and wide speed range. The MTPA is achieved by the direct calculation of reference flux-linkage as a function of commanded torque. The calculation of reference flux-linkage is done online by the solution of a quartic equation. Therefore, it is a more practical solution compared to look-up table methods that depend on machine parameters and require extensive offline calculations in advance. For realistic results, the IPMSM model is built considering iron losses. Besides, the IGBTs and diodes losses (conduction and switching losses) in power inverter are modeled and calculated to estimate properly total system efficiency. In addition, a bidirectional dc-dc boost converter is connected to the battery to improve the overall drive performance and achieve higher efficiency values. Also, instead of the conventional PI controller which suffers from parameter variation, the control scheme includes an adaptive fuzzy logic controller (FLC) to provide better speed tracking performance. It also provides a better robustness against disturbance and uncertainties. Finally, a series of simulation results with detailed analysis are executed for a 60 kW IPMSM. The electric vehicle (EV) parameters are equivalent to Nissan Leaf 2018 electric car.


2014 ◽  
Vol 672-674 ◽  
pp. 1234-1237
Author(s):  
Wen Zhuo Chen ◽  
Xiao Yu Zhang ◽  
Xiao Mei Sui

This template illustrates the control system of permanent magnet synchronous motor(PMSM) which uses field oriented vector control(field oriented vector control). PMSM is a complex, strong coupling and nonlinear system. And field oriented vector control could provide good performance as well as the PI controller setted with well parameter matching. Whereas limited by the number of voltage vector, the other control method of PMSM, direct torque control, could not satisfy accurate control when the machine running with a low speed. So modulation of the whole system is built here to realize closed-loop field oriented vector control control by keeping id=0 , and the machine model and the transformation among different coordinate system are discussed. The system is verified effective and feasible.


Sign in / Sign up

Export Citation Format

Share Document