Integration of the real-time simulation systems into the enterprise information system

Author(s):  
Konstantin Aksyonov ◽  
Eugene Bykov ◽  
Olga Aksyonova
2016 ◽  
Vol 10 (4) ◽  
pp. 251-259
Author(s):  
Alberto Álvarez ◽  
Laura Pozueco ◽  
Xabiel G Pañeda ◽  
Roberto García ◽  
David Melendi ◽  
...  

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Nariman Fouladinejad ◽  
Nima Fouladinejad ◽  
Mohamad Kasim Abdul Jalil ◽  
Jamaludin Mohd Taib

The development of complex simulation systems is extremely costly as it requires high computational capability and expensive hardware. As cost is one of the main issues in developing simulation components, achieving real-time simulation is challenging and it often leads to intensive computational burdens. Overcoming the computational burden in a multidisciplinary simulation system that has several subsystems is essential in producing inexpensive real-time simulation. In this paper, a surrogate-based computational framework was proposed to reduce the computational cost in a high-dimensional model while maintaining accurate simulation results. Several well-known metamodeling techniques were used in creating a global surrogate model. Decomposition approaches were also used to simplify the complexities of the system and to guide the surrogate modeling processes. In addition, a case study was provided to validate the proposed approach. A surrogate-based vehicle dynamic model (SBVDM) was developed to reduce computational delay in a real-time driving simulator. The results showed that the developed surrogate-based model was able to significantly reduce the computing costs, unlike the expensive computational model. The response time in surrogate-based simulation was considerably faster than the conventional model. Therefore, the proposed framework can be used in developing low-cost simulation systems while yielding high fidelity and fast computational output.


2010 ◽  
Vol 39 ◽  
pp. 395-398 ◽  
Author(s):  
Hai Hui Song ◽  
Yun Min Xie ◽  
Wei You Cai

This paper introduces a testing mothod about hydroturbine governing system based on dSPACE hardware-in-the-loop-simulation. PID parameters are adjusted by hardware-in-the-loop -simulation. The results of the simulation show that it can provide simple, intuitive simulation model, and make parameters adjusting more intuitive and easier. The validity of the testing platform have been testified by the results of real-time simulation and hardware-in-the-loop-simulation. The superiority of controldesk in the real-time simulation is prominent.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5481
Author(s):  
Qinpeng Wang ◽  
Heming Yao ◽  
Yonghua Yu ◽  
Jianguo Yang ◽  
Yuhai He

In this paper, the high-pressure common rail system of the marine diesel engine is taken as case study to establish a real-time simulation model of the high-pressure common rail system that can be used as the controlled object of the control system. On the premise of ensuring accuracy, the real-time simulation should also respond quickly to instructions issued by the control system. The development of the real-time simulation is based on the modular modeling method, and the high-pressure common rail system is divided into submodels, including the high-pressure oil pump, common rail tube, injector, and mass conversion. The submodels are built using the “surrogate model” method, which is mainly composed of MAP data and empirical formulas. The data used to establish the real-time simulation are not only from the empirical research into the high-pressure common rail system, but also from simulations of the high-pressure common rail system undertaken in AEMSim. The data obtained from this real-time simulation were compared with the experimental data to verify the model. The error in fuel injection quality is less than 5%, under different pressures and injection durations. In order to carry out dynamic verification, the PID control strategy, the model-based control strategy, and the established real-time simulation are all closed-loop tested. The results show that the developed real-time simulation can simulate the rail pressure wave caused by cyclic injection according to the control signal, and can feedback the control effect of different control strategies. Through verification, it is clear that the real-time simulation of the high-pressure common rail system can depict the rail pressure fluctuation caused by each cycle of fuel injection, while ensuring the accuracy and responsiveness of the simulation, which provides the ideal conditions for the study of a rail pressure control strategy.


Sign in / Sign up

Export Citation Format

Share Document