A capture method based on series-parallel manipulator for satellite on-orbit service

Author(s):  
Yong Wang ◽  
Haibo Zhang ◽  
Shuanfeng Xu ◽  
Zhibin Zhu ◽  
Qiang Tang ◽  
...  
Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Soheil Zarkandi

Abstract Reducing consumed power of a robotic machine has an essential role in enhancing its energy efficiency and must be considered during its design process. This paper deals with dynamic modeling and power optimization of a four-degrees-of-freedom flight simulator machine. Simulator cabin of the machine has yaw, pitch, roll and heave motions produced by a 4RPSP+PS parallel manipulator (PM). Using the Euler–Lagrange method, a closed-form dynamic equation is derived for the 4RPSP+PS PM, and its power consumption is computed on the entire workspace. Then, a newly introduced optimization algorithm called multiobjective golden eagle optimizer is utilized to establish a Pareto front of optimal designs of the manipulator having a relatively larger workspace and lower power consumption. The results are verified through numerical examples.


Robotica ◽  
2021 ◽  
pp. 1-15
Author(s):  
Xiaochu Liu ◽  
Yunfei Cai ◽  
Weitian Liu ◽  
Linlong Zhang ◽  
Chengxin Hu

Abstract In this paper, a special 6-PUS parallel manipulator (PM) is utilized as a shaking table. Unlike the existing results about 6-PUS PMs, we make the actuator direction collinear with the linkage direction at neutral position. With respect to the application background, a further analysis of the special PM is carried out from the perspective of motion/force transmissibility, natural frequency and acceleration capability. Specially, the complete dynamics model is established based on the Kane method. Then, generalized transmission indices based on the screw theory are utilized to reflect its motion ability, and a model of natural frequency is proposed with the axial stiffness of linkages considered. Finally, the effect of the angle between the actuator direction and the linkage direction α on various performances is analyzed, and other results are included to illustrate its feasibility and usability.


Author(s):  
Xiaoyong Wu ◽  
Yujin Wang ◽  
Zhaowei Xiang ◽  
Ran Yan ◽  
Rulong Tan ◽  
...  

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Soheil Zarkandi

Abstract A comprehensive dynamic modeling and actuator torque minimization of a new symmetrical three-degree-of-freedom (3-DOF) 3-PṞR spherical parallel manipulator (SPM) is presented. Three actuating systems, each of which composed of an electromotor, a gearbox and a double Rzeppa-type driveshaft, produce input torques of the manipulator. Kinematics of the 3-PṞR SPM was recently studied by the author (Zarkandi, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, https://doi.org/10.1177%2F0954406220938806). In this paper, a closed-form dynamic equation of the manipulator is derived with the Newton–Euler approach. Then, an optimization problem with kinematic and dynamic constraints is presented to minimize torques of the actuators for implementing a given task. The results are also verified by the SimMechanics model of the manipulator.


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110284
Author(s):  
Weiwei Wang ◽  
Ting Wei ◽  
Suihuai Yu ◽  
Jian Chen ◽  
Binhong Guo ◽  
...  

To solve the problem of the fuzzy and dynamics of requirement caused by users’ cognitive bias, a dynamic requirement and priority capture method based on user scenarios is proposed, aiming at effectively improving user experience. The method consists of the following steps: Firstly, users with similar characteristics are filtered to form a user cluster, then obtain the user’s product experience in different usage scenarios and acquire preliminary requirements by using service design methods. Secondly, the requirement path model tree will be designed and the requirement path matrix will be constructed through the evaluation of the user cluster. Then the pathfinder algorithm will be used to calculate the required correlation of user clusters and prioritize the requirements. Finally, the direction of the product design will be provided. Taking the design of the intelligent office chair as an example, the effectiveness of the method is verified by evaluating the satisfaction of user experience.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii299-iii299
Author(s):  
Wafik Zaky ◽  
Long Dao ◽  
Dristhi Ragoonanan ◽  
Izhar Bath ◽  
Sofia Yi ◽  
...  

Abstract BACKGROUND Despite its increasing use, circulating tumor cells (CTCs) have not been studied in pediatric brain tumors. METHODS Cell surface vimentin (CSV) is a marker for CTC detection. We developed an automated CSV-based CTC capture method for pediatric brain tumor using the Abnova Cytoquest platform. PBMCs isolated from blood samples from 52 brain tumor patients were processed to isolate CSV+ CTCs. Captured cells were then stained for CSV and CD45 and scanned to determine the number of CTCs. DIPG samples were additionally examined for H3K27M expression on CSV+ cells. Long term cancer survivors were used as a control cohort. RESULTS 86.4% of all the samples exhibited between 1–13 CSV+ CTCs, with a median of 2 CSV+ CTCs per sample. Using a value of ≥ 1 CTC as a positive result, the sensitivity and specificity of this test was 83.05% and 60.0% respectively. 19 DIPG samples were analyzed and 70% (13 samples) were positive for 1–5 CTCs. Five of these 7 positive CSV+ CTCs DIPG samples were also positive for H3K27M mutations by immunohistochemistry (71%). Mean survival in days for the CTC positive and negative DIPG samples were 114 and 211 days, respectively (p= 0.13). CONCLUSION This is the first study of CTCs in pediatric CNS tumors using an automated approach. Patients with brain tumors can exhibit CSV+ CTCs within peripheral blood. The use of specific molecular markers such as H3K27M can improve the diagnostic capability of liquid biopsies and may enable future disease assessment for personalized therapy.


Sign in / Sign up

Export Citation Format

Share Document