Micro Planar Parallel Mechanism Design using Configuration Change Effect of Flexure Mechanism

Author(s):  
Byoung Hun Kang ◽  
Kyoung Rae Cho
Author(s):  
Shorya Awtar ◽  
Edip Sevincer

Over-constraint is an important concern in mechanism design because it can lead to a loss in desired mobility. In distributed-compliance flexure mechanisms, this problem is alleviated due to the phenomenon of elastic averaging, thus enabling performance-enhancing geometric arrangements that are otherwise unrealizable. The principle of elastic averaging is illustrated in this paper by means of a multi-beam parallelogram flexure mechanism. In a lumped-compliance configuration, this mechanism is prone to over-constraint in the presence of nominal manufacturing and assembly errors. However, with an increasing degree of distributed-compliance, the mechanism is shown to become more tolerant to such geometric imperfections. The nonlinear load-stiffening and elasto-kinematic effects in the constituent beams have an important role to play in the over-constraint and elastic averaging characteristics of this mechanism. Therefore, a parametric model that incorporates these nonlinearities is utilized in predicting the influence of a representative geometric imperfection on the primary motion stiffness of the mechanism. The proposed model utilizes a beam generalization so that varying degrees of distributed compliance are captured using a single geometric parameter.


Author(s):  
Dongming Gan ◽  
Jian S. Dai ◽  
Darwin G. Caldwell

Based on the newly invented reconfigurable Hooke joint which changes the joint property, this paper investigates synthesis of limbs using the new joint based on constraint analysis. The procedure of the limb synthesis is put forward to fully use the property of the new joint for generating the reconfigurable limbs. Further, the paper presents a way of synthesising the parallel mechanism with metamorphic characteristics by starting from the aim at mobility-change. This is then integrated into the forward-based limb synthesis. A general procedure is proposed and applied to construct two classes of metamorphic parallel mechanisms. Their topological configuration change is investigated by examining the constraint change stemming from the phase alteration of the reconfigurable Hooke joint.


Author(s):  
Wei Sun ◽  
Qingkai Han ◽  
Xiaopeng Li ◽  
Bangchun Wen

A new method is proposed, which is the core of parametric simulation based on complicated mechanism design. Furthermore, the connotation of parametric simulation is affirmed and the flow of parametric simulation based on complicated mechanism design is put forward. At last, taking a parallel mechanism as example, the technology of parametric simulation proposed is applied to the simulation study used ADAMS, which consist of analyzing mechanism, parametric modeling, creating GUI, creating menu and parametric simulation. The practice indicates that the method is effectual.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 572 ◽  
Author(s):  
Huaxian Wei ◽  
Li Wang ◽  
Xiaodong Niu ◽  
Jian Zhang ◽  
Alessandro Simeone

Additive manufacturing technology has advantages for realizing complex monolithic structures, providing huge potential for developing advanced flexure mechanisms for precision manipulation. However, the characteristics of flexure hinges fabricated by laser beam melting (LBM) additive manufacturing (AM) are currently little known. In this paper, the fabrication and characterization of a flexure parallel mechanism through the LBM process are reported for the first time to demonstrate the development of this technique. The geometrical accuracy of the additive-manufactured flexure mechanism was evaluated by three-dimensional scanning. The stiffness characteristics of the flexure mechanism were investigated through finite element analysis and experimental tests. The effective hinge thickness was determined based on the parameters study of the flexure parallel mechanism. The presented results highlight the promising outlook of LBM flexure parts for developing novel nanomanipulation platforms, while additional attention is required for material properties and manufacturing errors.


Robotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Alexey Fomin ◽  
Anton Antonov ◽  
Victor Glazunov

This paper presents a hexapod-type reconfigurable parallel mechanism that operates from a single actuator. The mechanism design allows reproducing diverse output link trajectories without using additional actuators. The paper provides the kinematic analysis where the analytical relationships between the output link coordinates and actuated movement are determined. These relations are used next to develop an original and computationally effective algorithm for the reconfiguration procedure. The algorithm enables selecting mechanism parameters to realize a specific output link trajectory. Several examples demonstrate the implementation of the proposed techniques. CAD simulations on a mechanism virtual prototype verify the correctness of the suggested algorithm.


Sign in / Sign up

Export Citation Format

Share Document