Efficiency improvement of dual mode DC-DC buck converter under light load using PTWS with a zero current detector

Author(s):  
Young-Ho Shin ◽  
Hak-Yun Kim ◽  
Jin-Won Kim ◽  
Seong-Yeol Choi ◽  
Yeong-Seuk Kim ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 960
Author(s):  
Myeong Woo Kim ◽  
Jae Joon Kim

This paper presents a dual-mode DC-DC buck converter including a load-dependent, efficiency-controllable scheme to support multi-purpose IoT applications. For light-load applications, a selectable adaptive on-time pulse frequency modulation (PFM) control is proposed to achieve optimum power efficiency by selecting the optimum switching frequency according to the load current, thereby reducing unnecessary switching losses. When the inductor peak current value or converter output voltage ripple are considered in some applications, its on-time can be adjusted further. In heavy-load applications, a conventional pulse width modulation (PWM) control scheme is adopted, and its gate driver is structured to reduce dynamic current, preventing the current from shooting through the power switch. A proposed dual-mode buck converter prototype is fabricated in a 180 nm CMOS process, achieving its measured maximum efficiency of 95.7% and power density of 0.83 W/mm2.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 355
Author(s):  
Yeu-Torng Yau ◽  
Chao-Wei Wang ◽  
Kuo-Ing Hwu

In this paper, two light-load efficiency improvement methods are presented and applied to the ultrahigh step-down converter. The two methods are both based on skip mode control. Skip Mode 1 only needs one half-bridge driver integrated circuit (IC) to drive three switches, so it has the advantages of easy signal control and lower cost, whereas Skip Mode 2 requires one half-bridge driver integrated circuit IC, one common ground driver IC, and three independent timing pulse-width-modulated (PWM) signals to control three switches, so the cost is higher and the control signals are more complicated, but Skip Mode 2 can obtain slightly higher light-load efficiency than Skip Mode 1. Although the switching frequency used in these methods are reduced, the transferred energy is unchanged, but the output voltage ripple is influenced to some extent.


Sign in / Sign up

Export Citation Format

Share Document