Study of Linearly Cross-Coupled Chaotic Systems for a Random Bit Generator

Author(s):  
Zuowen Tan ◽  
Qi Wu
2018 ◽  
Vol 28 (04) ◽  
pp. 1850050 ◽  
Author(s):  
Ling Zhou ◽  
Chunhua Wang ◽  
Xin Zhang ◽  
Wei Yao

By replacing the resistor in a Twin-T network with a generalized flux-controlled memristor, this paper proposes a simple fourth-order memristive Twin-T oscillator. Rich dynamical behaviors can be observed in the dynamical system. The most striking feature is that this system has various periodic orbits and various chaotic attractors generated by adjusting parameter [Formula: see text]. At the same time, coexisting attractors and antimonotonicity are also detected (especially, two full Feigenbaum remerging trees in series are observed in such autonomous chaotic systems). Their dynamical features are analyzed by phase portraits, Lyapunov exponents, bifurcation diagrams and basin of attraction. Moreover, hardware experiments on a breadboard are carried out. Experimental measurements are in accordance with the simulation results. Finally, a multi-channel random bit generator is designed for encryption applications. Numerical results illustrate the usefulness of the random bit generator.


2012 ◽  
Vol 23 (03) ◽  
pp. 1250024 ◽  
Author(s):  
XING-YUAN WANG ◽  
YI-XIN XIE

Pseudo-random bit sequence have a wide range of applications in the field of cryptography and communications. For the good chaotic dynamical properties of chaotic systems sequence such as randomness and initial sensitivity, chaotic systems have a strong advantage in generating the pseudo-random bit sequence. However, in practical use, the dynamical properties of chaotic systems will be degraded because of the limited calculation accuracy and it even could cause a variety of security issues. To improve the security, in full analyses of the pseudo-random bit generator proposed in our former paper, we point out some problems in our former design and redesign a better pseudo-random bit generator base on it. At the same time, we make some relevant theoretical and experimental analyses on it. The experiments show that the design proposed in this paper has good statistical properties and security features.


Author(s):  
Christos Volos ◽  
Ioannis Kyprianidis ◽  
Ioannis Stouboulos ◽  
Sundarapandian Vaidyanathan

In the last decade, a very interesting relationship between cryptography and chaos theory was developed. As a result of this close relationship, several chaos-based cryptosystems, especially using autonomous chaotic dynamical systems, have been put forward. However, this chapter presents a novel Chaotic Random Bit Generator (CRBG), which is based on the Poincaré map of a non-autonomous dynamical system. For this reason, the very-well known Duffing-van der Pol system has been used. The proposed CRBG also uses the X-OR function for improving the “randomness” of the produced bit streams, which are subjected to the most stringent statistical tests, the FIPS-140-2 suite tests, to detect the specific characteristics that are expected from random bit sequences.


2009 ◽  
Vol 23 (25) ◽  
pp. 5085-5092
Author(s):  
XINGYUAN WANG ◽  
WEI LIU ◽  
NINI GU ◽  
HUAGUANG ZHANG

Limitations caused by degeneration of dynamics characteristics may exist in the traditional single chaotic system. The authors propose a method i.e., switch controller chaos and pseudo random bit generator (it is called SCS-PRBG for short), which is based on multiple chaotic systems and switch control. By the theoretic analysis of random key stream and performance of SCS-PRBG, we can see that its digital stream cipher has better randomicity and security. And if using hardware parallel computation, the speed of encryption can be improved sharply. The results of the experiments also present better security of this arithmetic.


2021 ◽  
pp. 921-930
Author(s):  
Muhammad Hamid ◽  
Musheer Ahmad ◽  
Hussam S. Alhadawi ◽  
Shivam Chandhok

2015 ◽  
Vol 9 (6) ◽  
pp. 568
Author(s):  
Ahmad Al-Jarrah ◽  
Mohammad Ababneh ◽  
Suleiman Bani Hani ◽  
Khalid Al-Widyan

Sign in / Sign up

Export Citation Format

Share Document