Research on Autonomous Driving Control Method of Intelligent Vehicle Based on Vision Navigation

Author(s):  
Ming Huang ◽  
Rui Zhang ◽  
Yulin Ma ◽  
QingXin Yan
Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 938
Author(s):  
Hanwei Bao ◽  
Zaiyu Wang ◽  
Zihao Liu ◽  
Gangyan Li

In contrast to the traditional pneumatic braking system, the electronic-controlled pneumatic braking system of commercial vehicles is a new system and can remedy the defects of the conventional braking system, such as long response time and low control accuracy. Additionally, it can adapt to the needs and development of autonomous driving. As the key pressure regulating component in electronic-controlled pneumatic braking system of commercial vehicles, automatic pressure regulating valves can quickly and accurately control the braking pressure in real time through an electronic control method. By aiming at improving driving comfort on the premise of ensuring braking security, this paper took the automatic pressure regulating valve as the research object and studied the pressure change rate during the braking process. First, the characteristics of the automatic pressure regulating valve and the concept of the pressure change rate were elaborated. Then, with the volume change of automatic pressure regulating valve in consideration, the mathematical model based on gas dynamics and the association model between pressure change rate and vehicle dynamic model was established in MATLAB/Simulink and analyzed. Next, through the experimental test of a sample product, the mathematical models have been verified. Finally, the key structure parameters affecting the pressure change rate of the automatic pressure regulating valve and the influence law have been identified; therefore, appropriate design advice and theoretical support have been provided to improve driving comfort.


Author(s):  
Shihuan Li ◽  
Lei Wang

For L4 and above autonomous driving levels, the automatic control system has been redundantly designed, and a new steering control method based on brake has been proposed; a new dual-track model has been established through multiple driving tests. The axle part of the model was improved, the accuracy of the transfer function of the model was verified again through acceleration-slide tests; a controller based on interference measurement was designed on the basis of the model, and the relationships between the controller parameters was discussed. Through the linearization of the controller, the robustness of uncertain automobile parameters is discussed; the control scheme is tested and verified through group driving test, and the results prove that the accuracy and precision of the controller meet the requirements, the robustness stability is good. Moreover, the predicted value of the model fits well with the actual observation value, the proposal of this method provides a new idea for avoiding car out of control.


Author(s):  
P. Lalitha Surya Kumari

Blockchain is the upcoming new information technology that could have quite a lot of significant future applications. In this chapter, the communication network for the reliable environment of intelligent vehicle systems is considered along with how the blockchain technology generates trust network among intelligent vehicles. It also discusses different factors that are effecting or motivating automotive industry, data-driven intelligent transportation system (D2ITS), structure of VANET, framework of intelligent vehicle data sharing based on blockchain used for intelligent vehicle communication and decentralized autonomous vehicles (DAV) network. It also talks about the different ways the autonomous vehicles use blockchain. Block-VN distributed architecture is discussed in detail. The different challenges of research and privacy and security of vehicular network are discussed.


2020 ◽  
Vol 28 (3) ◽  
pp. 1189-1212
Author(s):  
Martin Zimmermann ◽  
Franz Wotawa

Abstract Having systems that can adapt themselves in case of faults or changing environmental conditions is of growing interest for industry and especially for the automotive industry considering autonomous driving. In autonomous driving, it is vital to have a system that is able to cope with faults in order to enable the system to reach a safe state. In this paper, we present an adaptive control method that can be used for this purpose. The method selects alternative actions so that given goal states can be reached, providing the availability of a certain degree of redundancy. The action selection is based on weight models that are adapted over time, capturing the success rate of certain actions. Besides the method, we present a Java implementation and its validation based on two case studies motivated by the requirements of the autonomous driving domain. We show that the presented approach is applicable both in case of environmental changes but also in case of faults occurring during operation. In the latter case, the methods provide an adaptive behavior very much close to the optimal selection.


2015 ◽  
Vol 27 (6) ◽  
pp. 610-616 ◽  
Author(s):  
Hidehisa Yoshida ◽  
◽  
Manabu Omae ◽  
Takahiro Wada ◽  
◽  
...  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00270006/02.jpg"" width=""300"" /> Intelligent vehicle technologies</div>Autonomous driving has attracted attention in recent years from the viewpoint of energy consumption and traffic accident prevention; hence, its introduction has been desired. In Japan, various accident prevention safety technologies were developed for cooperative control between the driver and the vehicle system. For example, “adaptive cruise control system” and “lane departure warning system” were developed in the 1990s and “lane keeping assist system” and “braking control device for reducing collision damage” in the early stages of the 2000s. Later in Europe, autonomous driving systems were actively studied, and an automated braking system to avoid collisions was introduced in the market in the second half of the 2000s. Studies and development have been promoted for the practical use of active safety technologies based on autonomous driving technologies. Autonomous driving technologies could be applied to various cases, such as convoy travelling to compensate for the insufficient number of professional drivers or to improve their work environment, last-one-mile travelling from a public transportation station to home for the elderly, people who have children and people who need assistance, dead-man system for sudden illness of the driver, and automated parking for assisting the driver who is not good at it, or for the parking space to be effectively used. In this paper, an overview of the transition and history of vehicular technologies for safety and reliability is given. In particular, active safety technologies for traffic accident prevention and the necessary related technology trend are reviewed, and future problems are pointed out.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Cai Yingfeng ◽  
Yang Shaoqing ◽  
Wang Hai ◽  
Teng Chenglong ◽  
Chen Long

Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 215
Author(s):  
Luyao Du ◽  
Jun Ji ◽  
Donghua Zhang ◽  
Hongjiang Zheng ◽  
Wei Chen

In order to improve vehicle control safety in intelligent and connected environments, a fuzzy drive control strategy is proposed. Through the fusion of vehicle driving data, an early warning level model was established, and the fuzzy control method was used to obtain the appropriate torque command under the vehicle condition; torque optimization processing was performed according to the different corresponding vehicle following characteristics. The control strategy was tested and verified on an established platform. Based on the experimental results, compared with the traditional drive strategy in one-way front and rear following scenarios, the vehicle avoided excessive opening and closing of the accelerator pedal when the distance between vehicles was close, maintained the correct distance in the following situation, and had better dynamic response when the distance between vehicles was large, indicating that the proposed drive strategy had a better real-time and security performance.


Author(s):  
Stefano Feraco ◽  
Angelo Bonfitto ◽  
Nicola Amati ◽  
Andrea Tonoli

Abstract This paper presents a technique for the lane keeping and the longitudinal speed control of an autonomous vehicle with the combination of an MPC and a PID control. The goal of the proposed control method is to minimize the lateral deviation and relative yaw angle with respect to the planned trajectory, while driving the vehicle at the highest acceptable longitudinal speed. The reference profile of the longitudinal speed is computed considering both the lateral and longitudinal dynamic of the vehicle. The vehicle is represented by means of a linear 3-DoF bicycle model. The control algorithm takes the road lane boundaries as the only external input. The proposed strategy is validated in simulation on three distinct driving scenarios.


Sign in / Sign up

Export Citation Format

Share Document