scholarly journals A Peer Survey on Load Frequency Contol in Isolated Power System with Novel Topologies

Author(s):  
Namburi Nireekshana ◽  

Electrical Power systems are paramount intricate system which built by human beings, therefore this type of systems should maintain stable and to get upgrading for upcoming days need multiple control techniques. In these convoluted power systems voltage frequency plays a major role .Hence frequency has to control proper. To control frequency of voltage has three control techniques are primary, secondary and also tertiary frequency control techniques .Thereby second technique also known as Load Frequency Control[1], It is to maintain the desirable frequency even after occurrence of disturbance. Several techniques have been used (like classical, adaptive) to mitigate the power flow disturbances, but drawbacks (parameters tuning, cyber-attacks) are having in these methods. This paper proposes soft computing techniques to build up the operation, control and then stability of the electrical power system.

Load frequency control (LFC) in interconnected power system of small distribution generation (DG) for reliability in distribution system. The main objective is to performance evaluation load frequency control of hybrid for interconnected two-area power systems. The simulation consist of solar farm 10 MW and gasifier plant 300 kW two-area in tie line. This impact LFC can be address as a problem on how to effectively utilize the total tie-line power flow at small DG. To performance evaluation and improve that defect of LFC, the power flow of two-areas LFC system have been carefully studied, such that, the power flow and power stability is partially LFC of small DG of hybrid for interconnected two-areas power systems. Namely, the controller and structural properties of the multi-areas LFC system are similar to the properties of hybrid for interconnected two-area LFC system. Inspired by the above properties, the controller that is propose to design some proportional-integral-derivative (PID) control laws for the two-areas LFC system successfully works out the aforementioned problem. The power system of renewable of solar farm and gasifier plant in interconnected distribution power system of area in tie – line have simulation parameter by PID controller. Simulation results showed that 3 types of the controller have deviation frequency about 0.025 Hz when tie-line load changed 1 MW and large disturbance respectively. From interconnected power system the steady state time respond is 5.2 seconds for non-controller system, 4.3 seconds for automatic voltage regulator (AVR) and 1.4 seconds for under controlled system at 0.01 per unit (p.u.) with PID controller. Therefore, the PID control has the better efficiency non-controller 28 % and AVR 15 %. The result of simulation in research to be interconnected distribution power system substation of area in tie - line control for little generate storage for grid connected at better efficiency and optimization of renewable for hybrid. It can be conclude that this study can use for applying to the distribution power system to increase efficiency and power system stability of area in tie – line.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2125
Author(s):  
Ali Dokht Shakibjoo ◽  
Mohammad Moradzadeh ◽  
Seyed Zeinolabedin Moussavi ◽  
Lieven Vandevelde

In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability.


2014 ◽  
Vol 63 (2) ◽  
pp. 161-175 ◽  
Author(s):  
S. Selvakumaran ◽  
V. Rajasekaran ◽  
R. Karthigaivel

Abstract A new design of decentralized Load Frequency Controller for interconnected thermal non-reheat power systems with AC-DC parallel tie-lines based on Genetic Algorithm (GA) tuned Integral and Proportional (IP) controller is proposed in this paper. A HVDC link is connected in parallel with an existing AC tie-line to stabilize the frequency oscillations of the AC tie-line system. Any optimum controller selected for load frequency control of interconnected power systems should not only stabilize the power system but also reduce the system frequency and tie line power oscillations and settling time of the output responses. In practice Load Frequency Control (LFC) systems use simple Proportional Integral (PI) or Integral (I) controller. The controller parameters are usually tuned based on classical or trial-and-error approaches. But they are incapable of obtaining good dynamic performance for various load change scenarios in multi-area power system. For this reason, in this paper GA tuned IP controller is used. A two area interconnected thermal non-reheat power system is considered to demonstrate the validity of the proposed controller. The simulation results show that the proposed controller provides better dynamic responses with minimal frequency and tie-line power deviations, quick settling time and guarantees closed-loop stability margin.


Author(s):  
Pasala Gopi ◽  
P. Linga Reddy

The response of the load frequency control problem in multi-area interconnected electrical power system is much more complex with increasing size, changing structure and increasing load.  This paper deals with Load Frequency Control of three area interconnected Power system incorporating Reheat, Non-reheat and Reheat turbines in all areas respectively.  The response of the load frequency control problem in a multi-area interconnected power system is improved by designing PID controller using different tuning techniques and proved that the PID controller which was designed by Simulink Design Optimization (SDO) Software gives the superior performance than other controllers for step perturbations. Finally the robustness of controller was checked against system parameter variations..


2021 ◽  
Vol 11 (4) ◽  
pp. 7522-7529
Author(s):  
D. V. Doan ◽  
K. Nguyen ◽  
Q. V. Thai

This study focuses on designing an effective intelligent control method to stabilize the net frequency against load variations in multi-control-area interconnected power systems. Conventional controllers (e.g. Integral, PI, and PID) achieve only poor control performance with high overshoots and long settling times. They could be replaced with intelligent regulators that can update controller parameters for better control quality. The control strategy is based on fuzzy logic, which is one of the most effective intelligent strategies and can be a perfect substitute for such conventional controllers when dealing with network frequency stability problems. This paper proposes a kind of fuzzy logic controller based on the PID principle with a 49-rule set suitable to completely solve the problem of load frequency control in a two-area thermal power system. Such a novel PID-like fuzzy logic controller with modified scaling factors can be applied in various practical scenarios of an interconnected power system, namely varying load change conditions, changing system parameters in the range of ±50%, and considering Governor Dead-Band (GDB) along with Generation Rate Constraint (GRC) nonlinearities and time delay. Through the simulation results implemented in Matlab/Simulink software, this study demonstrates the effectiveness and feasibility of the proposed fuzzy logic controller over several counterparts in dealing with the load-frequency control of a practical interconnected power system considering the aforesaid conditions.


2020 ◽  
pp. 146-157
Author(s):  
Dr. Anand Gondesi ◽  
Dr. Varaha Narasimha Raja. Ch

Today, in power systems the Load Frequency Control (LFC) problem plays a vital role in an interconnected power system, wherein it maintains the system frequency and tie line flow at their scheduled values during normal period. It is due to frequency of power system, which changes over time with respect to continuous load variation. The present chapter proposes a new methodology to study the Load Frequency Control (LFC) problem of a three area inter-connected system using R Fuzzy system (FS) approach. Moreover, this technique is applied to control the systems which include three areas considering a non-linearity Generation Rate constraint (GRC) having two steam turbines and one hydro-turbine tied together. The main advantage of this controller is its high insensitivity to large load changes and plant parameter variations even in the presence of non-linearity. Furthermore, it is tested on a three-area power system to illustrate its robust performance. The results obtained by using Rule Based Fuzzy PID controller explicitly show that the performance of this proposed controller is superior to conventional controller in terms of several parameters like overshoot, settling time and robustness.


Sign in / Sign up

Export Citation Format

Share Document