A Comprehensive Survey on Blockchain in Industrial Internet of Things: Motivations, Research Progresses, and Future Challenges

Author(s):  
Ru Huo ◽  
Shiqin Zeng ◽  
Zhihao Wang ◽  
Jiajia Shang ◽  
Wei Chen ◽  
...  
2020 ◽  
Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Max Van Kleek ◽  
Omar Santos ◽  
Uchenna Ani

Abstract This article conducts a literature review of current and future challenges in the use of artificial intelligence (AI) in cyber physical systems. The literature review is focused on identifying a conceptual framework for increasing resilience with AI through automation supporting both, a technical and human level. The methodology applied resembled a literature review and taxonomic analysis of complex internet of things (IoT) interconnected and coupled cyber physical systems. There is an increased attention on propositions on models, infrastructures and frameworks of IoT in both academic and technical papers. These reports and publications frequently represent a juxtaposition of other related systems and technologies (e.g. Industrial Internet of Things, Cyber Physical Systems, Industry 4.0 etc). We review academic and industry papers published between 2010 and 2020. The results determine a new hierarchical cascading conceptual framework for analysing the evolution of AI decision-making in cyber physical systems. We argue that such evolution is inevitable and autonomous because of the increased integration of connected devices (IoT) in cyber physical systems. To support this argument, taxonomic methodology is adapted and applied for transparency and justifications of concepts selection decisions through building summary maps that are applied for designing the hierarchical cascading conceptual framework.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6647
Author(s):  
Soo Fun Tan ◽  
Azman Samsudin

The inherent complexities of Industrial Internet of Things (IIoT) architecture make its security and privacy issues becoming critically challenging. Numerous surveys have been published to review IoT security issues and challenges. The studies gave a general overview of IIoT security threats or a detailed analysis that explicitly focuses on specific technologies. However, recent studies fail to analyze the gap between security requirements of these technologies and their deployed countermeasure in the industry recently. Whether recent industry countermeasure is still adequate to address the security challenges of IIoT environment are questionable. This article presents a comprehensive survey of IIoT security and provides insight into today’s industry countermeasure, current research proposals and ongoing challenges. We classify IIoT technologies into the four-layer security architecture, examine the deployed countermeasure based on CIA+ security requirements, report the deficiencies of today’s countermeasure, and highlight the remaining open issues and challenges. As no single solution can fix the entire IIoT ecosystem, IIoT security architecture with a higher abstraction level using the bottom-up approach is needed. Moving towards a data-centric approach that assures data protection whenever and wherever it goes could potentially solve the challenges of industry deployment.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 152351-152366 ◽  
Author(s):  
Teklay Gebremichael ◽  
Lehlogonolo P. I. Ledwaba ◽  
Mohamed H. Eldefrawy ◽  
Gerhard P. Hancke ◽  
Nuno Pereira ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7518
Author(s):  
Shahid Latif ◽  
Maha Driss ◽  
Wadii Boulila ◽  
Zil e Huma ◽  
Sajjad Shaukat Jamal ◽  
...  

The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast communication protocols, and efficient cybersecurity mechanisms to improve industrial processes and applications. In large industrial networks, smart devices generate large amounts of data, and thus IIoT frameworks require intelligent, robust techniques for big data analysis. Artificial intelligence (AI) and deep learning (DL) techniques produce promising results in IIoT networks due to their intelligent learning and processing capabilities. This survey article assesses the potential of DL in IIoT applications and presents a brief architecture of IIoT with key enabling technologies. Several well-known DL algorithms are then discussed along with their theoretical backgrounds and several software and hardware frameworks for DL implementations. Potential deployments of DL techniques in IIoT applications are briefly discussed. Finally, this survey highlights significant challenges and future directions for future research endeavors.


2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


Author(s):  
С.Л. Добрынин ◽  
В.Л. Бурковский

Произведен обзор технологий в рамках концепции четвертой промышленной революции, рассмотрены примеры реализации новых моделей управления технологическими процессами на базе промышленного интернета вещей. Описано техническое устройство основных подсистем системы мониторинга и контроля, служащей для повышения осведомленности о фактическом состоянии производственных ресурсов в особенности станков и аддитивного оборудования в режиме реального времени. Архитектура предлагаемой системы состоит из устройства сбора данных (УСД), реализующего быстрый и эффективный сбор данных от станков и шлюза, передающего ликвидную часть информации в облачное хранилище для дальнейшей обработки и анализа. Передача данных выполняется на двух уровнях: локально в цехе, с использованием беспроводной сенсорной сети (WSN) на базе стека протоколов ZigBee от устройства сбора данных к шлюзам и от шлюзов в облако с использованием интернет-протоколов. Разработан алгоритм инициализации протоколов связи между устройством сбора данных и шлюзом, а также алгоритм выявления неисправностей в сети. Расчет фактического времени обработки станочных подсистем позволяет более эффективно планировать профилактическое обслуживание вместо того, чтобы выполнять задачи обслуживания в фиксированные интервалы без учета времени использования оборудования We carried out a review of technologies within the framework of the concept of the fourth industrial revolution; we considered examples of the implementation of new models of process control based on the industrial Internet of things. We described the technical structure of the main subsystems of the monitoring and control system to increase awareness of the actual state of production resources in particular machine tools and additive equipment in real time. The architecture of the proposed system consists of a data acquisition device (DAD) that implements fast and efficient data collection from machines and a gateway that transfers the liquid part of information to the cloud storage for further processing and analysis. We carried out the data transmission at two levels, locally in the workshop, using a wireless sensor network (WSN) based on ZigBee protocol stack from the data acquisition device to the gateways and from the gateways to the cloud using Internet protocols. An algorithm was developed for initializing communication protocols between a data acquisition device and a gateway, as well as an algorithm for detecting network malfunctions. Calculating the actual machining time of machine subsystems allows us to more efficiently scheduling preventive maintenance rather than performing maintenance tasks at fixed intervals without considering equipment usage


2021 ◽  
Vol 173 ◽  
pp. 150-159
Author(s):  
Keming Mao ◽  
Gautam Srivastava ◽  
Reza M. Parizi ◽  
Mohammad S. Khan

Sign in / Sign up

Export Citation Format

Share Document