An Effective Model for Edge-Side Collaborative Storage in Data-Intensive Edge Computing

Author(s):  
Yunhao Li ◽  
Junzhou Luo ◽  
Jiahui Jin ◽  
Runqun Xiong ◽  
Fang Dong
2020 ◽  
Vol 2 (1) ◽  
pp. 92
Author(s):  
Rahim Rahmani ◽  
Ramin Firouzi ◽  
Sachiko Lim ◽  
Mahbub Alam

The major challenges of operating data-intensive of Distributed Ledger Technology (DLT) are (1) to reach consensus on the main chain as a set of validators cast public votes to decide on which blocks to finalize and (2) scalability on how to increase the number of chains which will be running in parallel. In this paper, we introduce a new proximal algorithm that scales DLT in a large-scale Internet of Things (IoT) devices network. We discuss how the algorithm benefits the integrating DLT in IoT by using edge computing technology, taking the scalability and heterogeneous capability of IoT devices into consideration. IoT devices are clustered dynamically into groups based on proximity context information. A cluster head is used to bridge the IoT devices with the DLT network where a smart contract is deployed. In this way, the security of the IoT is improved and the scalability and latency are solved. We elaborate on our mechanism and discuss issues that should be considered and implemented when using the proposed algorithm, we even show how it behaves with varying parameters like latency or when clustering.


2020 ◽  
Author(s):  
João Luiz Grave Gross ◽  
Cláudio Fernando Fernando Resin Geyer

In a scenario with increasingly mobile devices connected to the Internet, data-intensive applications and energy consumption limited by battery capacity, we propose a cost minimization model for IoT devices in a Mobile Edge Computing (MEC) architecture with the main objective of reducing total energy consumption and total elapsed times from task creation to conclusion. The cost model is implemented using the TEMS (Time and Energy Minimization Scheduler) scheduling algorithm and validated with simulation. The results show that it is possible to reduce the energy consumed in the system by up to 51.61% and the total elapsed time by up to 86.65% in the simulated cases with the parameters and characteristics defined in each experiment.


2021 ◽  
Vol 7 ◽  
pp. e755
Author(s):  
Abdullah Alharbi ◽  
Hashem Alyami ◽  
Poongodi M ◽  
Hafiz Tayyab Rauf ◽  
Seifedine Kadry

The proposed research motivates the 6G cellular networking for the Internet of Everything’s (IoE) usage empowerment that is currently not compatible with 5G. For 6G, more innovative technological resources are required to be handled by Mobile Edge Computing (MEC). Although the demand for change in service from different sectors, the increase in IoE, the limitation of available computing resources of MEC, and intelligent resource solutions are getting much more significant. This research used IScaler, an effective model for intelligent service placement solutions and resource scaling. IScaler is considered to be made for MEC in Deep Reinforcement Learning (DRL). The paper has considered several requirements for making service placement decisions. The research also highlights several challenges geared by architectonics that submerge an Intelligent Scaling and Placement module.


2021 ◽  
Vol 114 ◽  
pp. 259-271
Author(s):  
Thomas Rausch ◽  
Alexander Rashed ◽  
Schahram Dustdar

Smart Cities ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 1469-1495
Author(s):  
Swapnil Sadashiv Shinde ◽  
Daniele Tarchi

Modern cities require a tighter integration with Information and Communication Technologies (ICT) for bringing new services to the citizens. The Smart City is the revolutionary paradigm aiming at integrating the ICT with the citizen life; among several urban services, transports are one of the most important in modern cities, introducing several challenges to the Smart City paradigm. In order to satisfy the stringent requirements of new vehicular applications and services, Edge Computing (EC) is one of the most promising technologies when integrated into the Vehicular Networks (VNs). EC-enabled VNs can facilitate new latency-critical and data-intensive applications and services. However, ground-based EC platforms (i.e., Road Side Units—RSUs, 5G Base Stations—5G BS) can only serve a reduced number of Vehicular Users (VUs), due to short coverage ranges and resource shortage. In the recent past, several new aerial platforms with integrated EC facilities have been deployed for achieving global connectivity. Such air-based EC platforms can complement the ground-based EC facilities for creating a futuristic VN able to deploy several new applications and services. The goal of this work is to explore the possibility of creating a novel joint air-ground EC platform within a VN architecture for helping VUs with new intelligent applications and services. By exploiting most modern technologies, with particular attention towards network softwarization, vehicular edge computing, and machine learning, we propose here three possible layered air-ground EC-enabled VN scenarios. For each of the discussed scenarios, a list of the possible challenges is considered, as well possible solutions allowing to overcome all or some of the considered challenges. A proper comparison is also done, through the use of tables, where all the proposed scenarios, and the proposed solutions, are discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yana Qin ◽  
Danye Wu ◽  
Zhiwei Xu ◽  
Jie Tian ◽  
Yujun Zhang

To enhance the quality and speed of data processing and protect the privacy and security of the data, edge computing has been extensively applied to support data-intensive intelligent processing services at edge. Among these data-intensive services, ensemble learning-based services can, in natural, leverage the distributed computation and storage resources at edge devices to achieve efficient data collection, processing, and analysis. Collaborative caching has been applied in edge computing to support services close to the data source, in order to take the limited resources at edge devices to support high-performance ensemble learning solutions. To achieve this goal, we propose an adaptive in-network collaborative caching scheme for ensemble learning at edge. First, an efficient data representation structure is proposed to record cached data among different nodes. In addition, we design a collaboration scheme to facilitate edge nodes to cache valuable data for local ensemble learning, by scheduling local caching according to a summarization of data representations from different edge nodes. Our extensive simulations demonstrate the high performance of the proposed collaborative caching scheme, which significantly reduces the learning latency and the transmission overhead.


2019 ◽  
Vol 17 (4) ◽  
pp. 677-698 ◽  
Author(s):  
Atakan Aral ◽  
Ivona Brandic ◽  
Rafael Brundo Uriarte ◽  
Rocco De Nicola ◽  
Vincenzo Scoca

Abstract Latency-sensitive and data-intensive applications, such as IoT or mobile services, are leveraged by Edge computing, which extends the cloud ecosystem with distributed computational resources in proximity to data providers and consumers. This brings significant benefits in terms of lower latency and higher bandwidth. However, by definition, edge computing has limited resources with respect to cloud counterparts; thus, there exists a trade-off between proximity to users and resource utilization. Moreover, service availability is a significant concern at the edge of the network, where extensive support systems as in cloud data centers are not usually present. To overcome these limitations, we propose a score-based edge service scheduling algorithm that evaluates network, compute, and reliability capabilities of edge nodes. The algorithm outputs the maximum scoring mapping between resources and services with regard to four critical aspects of service quality. Our simulation-based experiments on live video streaming services demonstrate significant improvements in both network delay and service time. Moreover, we compare edge computing with cloud computing and content delivery networks within the context of latency-sensitive and data-intensive applications. The results suggest that our edge-based scheduling algorithm is a viable solution for high service quality and responsiveness in deploying such applications.


Sign in / Sign up

Export Citation Format

Share Document