Three-Dimensional Adaptive Guidance Law Based on Robust Control Method

Author(s):  
Hua-dong Yang ◽  
Yong-dun Yan
2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Pengchao Zhang

This paper presents a dynamic surface adaptive robust control method with disturbance observer for unmanned marine vehicles (UMV). It uses adaptive law to estimate and compensate the disturbance observer error. Dynamic surface is introduced to solve the “differential explosion” caused by the virtual control derivation in traditional backstepping method. The final controlled system is proved to be globally uniformly bounded based on Lyapunov stability theory. Simulation results illustrate the effectiveness of the proposed controller, which can realize the three-dimensional trajectory tracking for UMV with the systematic uncertainty and time-varying disturbances.


Author(s):  
Shaoming He ◽  
Wei Wang ◽  
Jiang Wang

This paper presents a suboptimal three-dimensional guidance law to intercept unknown maneuvering targets with terminal angle constraint using multivariable control design. The presented guidance law is essentially a composite control method, which is constructed through a combination of standard continuous model predictive control (MPC) and adaptive multivariable sliding mode disturbance observer (SMDO). More specifically, the MPC method is utilized to obtain optimal line-of-sight (LOS) angle tracking performance for nonmaneuvering targets, while the SMDO technique is used to estimate and compensate for the unknown target maneuver online. By virtue of the adaptive nature, the proposed guidance law does not require any information on the bounds of target maneuver and its gradient except for their existence. The stability of the closed-loop guidance system is also analyzed by using Lyapunov function method. Simulation results clearly confirm the effectiveness of the proposed formulation against a maneuvering target.


2010 ◽  
Vol 40-41 ◽  
pp. 71-77
Author(s):  
Nan Li ◽  
Yan Jun Li ◽  
Yun Yan Zhang

The specific guidance simulation system for the infrared air-to-air missile is built. Seeker model including the target detection and tracking loop has simulated not only the different modes of field of view (FOV) according to the geometrical relationship between the target and missile, but also the jamming effect based on the equivalent target calculation; fuze model contains three different trigger mechanisms; guidance of missile is realized via three-dimensional proportional guidance law; the 6 DOF kinematics model and dynamic model of airframe are derived, through aerodynamic force and torque calculating, triple-channel autopilot model is set up by using the PID control method. Finally simulations under three different cases are implemented and the results show that the whole system is credible.


Author(s):  
Li Hongxia ◽  
Deng Yifan ◽  
Yuanli Cai

This article proposes a new terminal cooperative guidance law with impact time constraint in three-dimensional (3D) engagement. Two parts are comprised by this guidance scheme to control the impact time and fulfill the interception. The guidance law along the line-of-sight (LOS) direction is first designed based on finite time consensus protocol to share time-to-go values among missiles and reach the consensus. Meanwhile, the guidance law on the LOS normal direction is developed based on the fast finite time control method to achieve the interception. The stability analysis of the proposed guidance law based on the Lyapunov theory is also demonstrated in detail. Moreover, the maneuvering target can be intercepted successfully under the presented control algorithm, and the guidance system can fulfill stability within finite time. Additionally, the effectiveness and applicability of the proposed guidance scheme are explicitly verified through simulation tests.


2020 ◽  
Vol 30 (9) ◽  
pp. 3653-3671 ◽  
Author(s):  
Defu Lin ◽  
Yi Ji ◽  
Wei Wang ◽  
Yuchen Wang ◽  
Hui Wang ◽  
...  

2014 ◽  
Vol 757 ◽  
pp. 908-942 ◽  
Author(s):  
K. Matsuura ◽  
M. Nakano

AbstractThis study investigates the suppression of the sound produced when a jet, issued from a circular nozzle or hole in a plate, goes through a similar hole in a second plate. The sound, known as a hole tone, is encountered in many practical engineering situations. The mean velocity of the air jet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}u_0$ was $6\text {--}12\ \mathrm{m}\ {\mathrm{s}}^{-1}$. The nozzle and the end plate hole both had a diameter of 51 mm, and the impingement length $L_{im}$ between the nozzle and the end plate was 50–90 mm. We propose a novel passive control method of suppressing the tone with an axisymmetric obstacle on the end plate. We find that the effect of the obstacle is well described by the combination ($W/L_{im}$, $h$) where $W$ is the distance from the edge of the end plate hole to the inner wall of the obstacle, and $h$ is the obstacle height. The tone is suppressed when backflows from the obstacle affect the jet shear layers near the nozzle exit. We do a direct sound computation for a typical case where the tone is successfully suppressed. Axisymmetric uniformity observed in the uncontrolled case is broken almost completely in the controlled case. The destruction is maintained by the process in which three-dimensional vortices in the jet shear layers convect downstream, interact with the obstacle and recursively disturb the jet flow from the nozzle exit. While regions near the edge of the end plate hole are responsible for producing the sound in the controlled case as well as in the uncontrolled case, acoustic power in the controlled case is much lower than in the uncontrolled case because of the disorganized state.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29755-29763
Author(s):  
Mu Lin ◽  
Xiangjun Ding ◽  
Chunyan Wang ◽  
Li Liang ◽  
Jianan Wang

Sign in / Sign up

Export Citation Format

Share Document