Three-dimensional cooperative interception guidance law with impact time constraint

Author(s):  
Li Hongxia ◽  
Deng Yifan ◽  
Yuanli Cai

This article proposes a new terminal cooperative guidance law with impact time constraint in three-dimensional (3D) engagement. Two parts are comprised by this guidance scheme to control the impact time and fulfill the interception. The guidance law along the line-of-sight (LOS) direction is first designed based on finite time consensus protocol to share time-to-go values among missiles and reach the consensus. Meanwhile, the guidance law on the LOS normal direction is developed based on the fast finite time control method to achieve the interception. The stability analysis of the proposed guidance law based on the Lyapunov theory is also demonstrated in detail. Moreover, the maneuvering target can be intercepted successfully under the presented control algorithm, and the guidance system can fulfill stability within finite time. Additionally, the effectiveness and applicability of the proposed guidance scheme are explicitly verified through simulation tests.

2022 ◽  
pp. 1-20
Author(s):  
G. Wu ◽  
K. Zhang ◽  
Z. Han

Abstract In order to intercept a highly manoeuvering target with an ideal impact angle in the three-dimensional space, this paper promises to probe into the problem of three-dimensional terminal guidance. With the goal of the highly target acceleration and short terminal guidance time, a guidance law, based on the advanced fast non-singular terminal sliding mode theory, is designed to quickly converge the line-of-sight (LOS) angle and the LOS angular rate within a finite time. In the design process, the target acceleration is regarded as an unknown boundary external disturbance of the guidance system, and the RBF neural network is used to estimate it. In order to improve the estimation accuracy of RBF neural network and accelerate its convergence, the parameters of RBF neural network are adjusted online in real time. At the same time, an adaptive law is designed to compensate the estimation error of the RBF neural network, which improves the convergence speed of the guidance system. Theoretical analysis demonstrates that the state and the sliding manifold of the guidance system converge in finite time. According to Lyapunov theory, the stability of the system can be guaranteed by online adjusting the parameters of RBF neural network and adaptive parameters. The numerical simulation results verify the effectiveness and superiority of the proposed guidance law.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Shang ◽  
Jie Guo ◽  
Shengjing Tang ◽  
Yueyue Ma ◽  
Yao Zhang

This paper investigates the terminal guidance problem for the missile intercepting a maneuvering target with impact time constraint. An impact time guidance law based on finite time convergence control theory is developed regarding the target motion as an unknown disturbance. To further improve the performance of the guidance law, an autopilot dynamics which is considered as a first-order lag is taken into consideration. In the proposed method, the coefficients change with the relative distance between missile and target. This variable coefficient strategy ensures that the missile impacts the target at the desired time with little final miss distance. Then it is proved that states of the guidance system converge to sliding mode in finite time under the proposed guidance law. Numerical simulations are presented to demonstrate the effectiveness of the impact time guidance law with autopilot dynamics (ITGAD).


2018 ◽  
Vol 41 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Junhong Song ◽  
Shenmin Song

In this paper, for the three-dimensional terminal guidance problem of a missile intercepting a manoeuvring target, a robust continuous guidance law with impact angle constraints in the presence of both an acceleration saturation constraint and a second-order-lag autopilot is developed. First, based on non-singular fast terminal sliding mode and adaptive control, a step-by-step backstepping method is used to design the guidance law. In the process of guidance law design, with the use of a finite-time control technique, virtual control laws are developed, a tracking differentiator is used to eliminate the ‘explosion of complexity’ problem inherent in the traditional backstepping method, and an additional system is constructed to deal with the acceleration saturation problem; its states are used for guidance law design and stability analysis. Moreover, the target acceleration is considered bounded disturbance, but the upper bound is not required to be known in advance, whereas the upper bound is estimated online by a designed adaptive law. Next, finite-time stability of the guidance system is strictly proved by using a Lyapunov method. Finally, numerical simulations are presented to demonstrate the excellent guidance performances of the proposed guidance law in terms of accuracy and efficiency.


2014 ◽  
Vol 945-949 ◽  
pp. 1493-1499 ◽  
Author(s):  
Lin Ping Feng ◽  
Zuo E Fan ◽  
You Gen Zhang

In order to achieve the tactical mission of cooperative attack for multi-missiles, in a predetermined direction at a predetermined time, this paper studies the design of guidance law with impact angle and impact time constraints. Firstly, using the optimal control theory, the optimal guidance law is designed to control the impact angle, based the relative motion between missile and target. Then the state feedback guidance law is designed to control the arrival impact time, with the application of feedback linearization control theory. Finally, reference the design idea of two-stage guidance system, the anti-ship missile use two different guidance laws in the process of attacking the target. During the first stage, the state feedback guidance law is used to accurately control the impact time and coarsely control the impact angle. During the second stage, the optimal guidance law is used to accurately control the impact angle. And the correctness and effectiveness of the design method is verified by simulation.


Author(s):  
Shaoming He ◽  
Wei Wang ◽  
Jiang Wang

This paper presents a suboptimal three-dimensional guidance law to intercept unknown maneuvering targets with terminal angle constraint using multivariable control design. The presented guidance law is essentially a composite control method, which is constructed through a combination of standard continuous model predictive control (MPC) and adaptive multivariable sliding mode disturbance observer (SMDO). More specifically, the MPC method is utilized to obtain optimal line-of-sight (LOS) angle tracking performance for nonmaneuvering targets, while the SMDO technique is used to estimate and compensate for the unknown target maneuver online. By virtue of the adaptive nature, the proposed guidance law does not require any information on the bounds of target maneuver and its gradient except for their existence. The stability of the closed-loop guidance system is also analyzed by using Lyapunov function method. Simulation results clearly confirm the effectiveness of the proposed formulation against a maneuvering target.


2010 ◽  
Vol 40-41 ◽  
pp. 71-77
Author(s):  
Nan Li ◽  
Yan Jun Li ◽  
Yun Yan Zhang

The specific guidance simulation system for the infrared air-to-air missile is built. Seeker model including the target detection and tracking loop has simulated not only the different modes of field of view (FOV) according to the geometrical relationship between the target and missile, but also the jamming effect based on the equivalent target calculation; fuze model contains three different trigger mechanisms; guidance of missile is realized via three-dimensional proportional guidance law; the 6 DOF kinematics model and dynamic model of airframe are derived, through aerodynamic force and torque calculating, triple-channel autopilot model is set up by using the PID control method. Finally simulations under three different cases are implemented and the results show that the whole system is credible.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liang Jing ◽  
Changzhu Wei ◽  
Liang Zhang ◽  
Naigang Cui

To intercept the maneuvering target through multimissile cooperation, predefined-time cooperative guidance (PTCG) law is presented with constraints including the impact time and the line-of-sight (LOS) angle. In order to achieve simultaneous interception, we propose a PTCG law in the LOS direction based on a predefined-time consensus protocol, which guarantees the achievement of consensus on each missile’s impact time within the predefined time. Furthermore, to ensure the predefined-time convergence of the LOS angle and the predefined-time convergence of the LOS angular rate, a PTCG law with a fixed-time disturbance observer (FxTDO) is presented in the normal direction of the LOS. Compared with the traditional finite-time or fixed-time cooperative guidance laws, the proposed PTCG law predefines the upper bound of the settling time as an explicit parameter. Finally, the simulation results of the PTCG law verify the efficiency of the proposed method.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29755-29763
Author(s):  
Mu Lin ◽  
Xiangjun Ding ◽  
Chunyan Wang ◽  
Li Liang ◽  
Jianan Wang

Author(s):  
Chenqi Zhu

In order to improve the guiding accuracy in intercepting the hypersonic vehicle, this article presents a finite-time guidance law based on the observer and head-pursuit theory. First, based on a two-dimensional model between the interceptor and target, this study applies the fast power reaching law to head-pursuit guidance law so that it can alleviate the chattering phenomenon and ensure the convergence speed. Second, target maneuvers are considered as system disturbances, and the head-pursuit guidance law based on an observer is proposed. Furthermore, this method is extended to a three-dimensional case. Finally, comparative simulation results further verify the superiority of the guidance laws designed in this article.


Sign in / Sign up

Export Citation Format

Share Document