Spot the GEO Satellites: From Dataset to Kelvins SpotGEO Challenge

Author(s):  
Bo Chen ◽  
Daqi Liu ◽  
Tat-Jun Chin ◽  
Mark Rutten ◽  
Dawa Derksenv ◽  
...  
Keyword(s):  
2020 ◽  
Vol 12 (20) ◽  
pp. 3365
Author(s):  
Byung-Kyu Choi ◽  
Kyoung-Min Roh ◽  
Haibo Ge ◽  
Maorong Ge ◽  
Jung-Min Joo ◽  
...  

The Korean government has a plan to build a new regional satellite navigation system called the Korean Positioning System (KPS). The initial KPS constellation is designed to consist of seven satellites, which include three geostationary Earth orbit (GEO) satellites and four inclined geosynchronous orbit (IGSO) satellites. KPS will provide an independent positioning, navigation, and timing (PNT) service in the Asia-Oceania region and can also be compatible with GPS. In the simulation for KPS, we employ 24 GPS as designed initially and 7 KPS satellites. Compared to the true orbit that we simulated, the averaged root mean square (RMS) values of orbit-only signal-in-space ranging errors (SISRE) are approximately 4.3 and 3.9 cm for KPS GEO and IGSO. Two different positioning solutions are analyzed to demonstrate the KPS performance. KPS standard point positioning (SPP) errors in the service area are about 4.7, 3.9, and 7.1 m for east (E), north (N), and up (U) components, respectively. The combined KPS+GPS SPP accuracy can be improved by 25.0%, 31.8%, and 35.0% compared to GPS in E, N, and U components. The averaged position errors for KPS kinematic precise point positioning (KPPP) are less than 10 cm. In the fringe of the KPS service area, however, the position RMS errors can reach about 40 cm. Unlike KPS, GPS solutions show high positioning accuracy in the KPS service area. The combined KPS+GPS can be improved by 28.7%, 27.1%, and 30.5% compared to GPS in E, N, and U components, respectively. It is noted that KPS can provide better performance with GPS in the Asia-Oceania region.


2022 ◽  
Author(s):  
Dale C. Ferguson ◽  
Ernest Holeman
Keyword(s):  

2021 ◽  
Author(s):  
Jie Li ◽  
Yongqiang Yuan ◽  
Shi Huang ◽  
Chengbo Liu ◽  
Jiaqing Lou ◽  
...  

<p>With the successful launch of the last Geostationary Earth Orbit (GEO) satellite in June 2020, China has completed the construction of the third generation BeiDou navigation satellites system (BDS-3). BDS-3 global services have been initiated in July 2020 with the constellation of 3 GEO, 3 Inclined Geosynchronous Orbit (IGSO) and 24 Medium Earth Orbit (MEO) satellites. In order to further improve the performance of BDS-3 services, the quality of BDS-3 precise orbit product needs further enhancements.</p><p>       The solar radiation pressure (SRP) is the main non-conservative orbit perturbation for GNSS satellites and is the key to improve BDS-3 precise orbit determination. In this study, we focus on the SRP models for BDS-3 satellites. Firstly, the widely used Extended CODE Orbit Model with five parameters (ECOM-5) is assessed. With one-year observations of 2020 from both iGMAS and MGEX networks, the five parameters of ECOM model (D0, Y0, B0, Bc and Bs) are estimated for each BDS-3 satellite. The D0 estimates show an obvious dependency on the elevation angle of the Sun above the satellite orbital plane (denoted as β). In addition, large variations can be noticed in eclipse seasons, which indicate the dramatic changes of SRP. The Y0 estimates vary from -0.6 nm/s<sup>2</sup> to 0.6 nm/s<sup>2</sup> for MEO, -1.0 to 1.0 nm/s<sup>2</sup> for IGSO and -1.0 to 1.5 nm/s<sup>2</sup> for GEO satellites. The B0 estimates of several satellites exhibit a clear dependency on the β angle. The largest variation of B0 appears at C45 and C46, changing from 1.0 nm/s<sup>2</sup> at 15 deg to 8.3 nm/s<sup>2</sup> at 64 deg, which implies that the solar panels of these two satellites may have an obvious rotation lag. To compensate the deficiencies of BDS-3 SRP modeling, we introduce several additional parameters into ECOM-5 model (e.g. introducing higher harmonic terms). The POD performances can be improved by about 10% and 40% for BDS-3 MEO/IGSO and GEO satellites, respectively.</p><p>       Except for the empirical model, we also study the semi-empirical SRP model such as the a priori box-wing model. Since the geometrical and optical properties from BDS-3 metadata are general and rough, we apply more detailed geometrical and optical coefficients for BDS-3 satellites. The POD performance can be improved by about 10% compared to empirical SRP models. Furthermore, considering Earth radiation pressure will have an impact of about 1.3 cm in radial component for MEO satellites.</p>


2020 ◽  
Vol 15 (12) ◽  
pp. 1508-1517
Author(s):  
Xiangfei Yin ◽  
Genyou Liu ◽  
Shilong Cao

The geosynchronous earth orbit (GEO) satellites have good coverage performance and are widely used in WAAS, BDS, CAPS and other regional augmentation and regional navigation systems. At the same time, the precise orbit determination and prediction of such satellites play a significant role in high-precision navigation and user real-time positioning. In order to obtain higher accuracy of orbit determination, the laser ranging device is improved by equipping with a silicon-substrate germanium MSM photodetector in this study. In addition, the surface plasmon resonance augmentation effect is further studied to further enhance the photoelectric performance of the silicon-substrate germanium MSM photodetector. The detector is connected to the OPA657. The corresponding pre-amplified circuit is further designed in this study so that the laser ranging device can be used for the orbit determination application of GEO navigation satellites. In the experiment, the designed silicon-substrate germanium MSM photodetector is tested firstly, the finite-different time-domain (FDTD) method is used to analyze the structure of the photodetector. Then, the effects of the structural parameters such as the grating period on the resonance augmentation of the designed photodetector are analyzed. The results reveal that the photodetector has the best performance at 1500 nm with the absorption enhancement factor of higher than 7. The GNSS combined with the laser ranging is used for comparing the orbit determination errors of GEO satellites. 10 laser observation stations are selected, some of which are equipped with the laser ranging device designed in this study and supply to various GEO satellites for information collection. The results show that GEO satellites have to be introduced to the system deviation when adding the laser ranging data, otherwise they will deviate from the orbit. In addition, the laser ranging device designed in this study can significantly reduce the deviation caused by the introduction of laser ranging data from GEO satellites compared with traditional laser ranging devices.


2019 ◽  
Vol 11 (21) ◽  
pp. 2514 ◽  
Author(s):  
Xingxing Li ◽  
Keke Zhang ◽  
Fujian Ma ◽  
Wei Zhang ◽  
Qian Zhang ◽  
...  

Global navigation satellite system (GNSS) orbits are traditionally determined by observation data of ground stations, which usually need even global distribution to ensure adequate observation geometry strength. However, good tracking geometry cannot be achieved for all GNSS satellites due to many factors, such as limited ground stations and special stationary characteristics for the geostationary Earth orbit (GEO) satellites in the BeiDou constellation. Fortunately, the onboard observations from low earth orbiters (LEO) can be an important supplement to overcome the weakness in tracking geometry. In this contribution, we perform large LEO constellation-augmented multi-GNSS precise orbit determination (POD) based on simulated GNSS observations. Six LEO constellations with different satellites numbers, orbit types, and altitudes, as well as global and regional ground networks, are designed to assess the influence of different tracking configurations on the integrated POD. Then, onboard and ground-based GNSS observations are simulated, without regard to the observations between LEO satellites and ground stations. The results show that compared with ground-based POD, a remarkable accuracy improvement of over 70% can be observed for all GNSS satellites when the entire LEO constellation is introduced. Particularly, BDS GEO satellites can obtain centimeter-level orbits, with the largest accuracy improvement being 98%. Compared with the 60-LEO and 66-LEO schemes, the 96-LEO scheme yields an improvement in orbit accuracy of about 1 cm for GEO satellites and 1 mm for other satellites because of the increase of LEO satellites, but leading to a steep rise in the computational time. In terms of the orbital types, the sun-synchronous-orbiting constellation can yield a better tracking geometry for GNSS satellites and a stronger augmentation than the polar-orbiting constellation. As for the LEO altitude, there are almost no large-orbit accuracy differences among the 600, 1000, and 1400 km schemes except for BDS GEO satellites. Furthermore, the GNSS orbit is found to have less dependence on ground stations when incorporating a large number of LEO. The orbit accuracy of the integrated POD with 8 global stations is almost comparable to the result of integrated POD with a denser global network of 65 stations. In addition, we also present an analysis concerning the integrated POD with a partial LEO constellation. The result demonstrates that introducing part of a LEO constellation can be an effective way to balance the conflict between the orbit accuracy and computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document