A flexible implementation of a Global Navigation Satellite System (GNSS) receiver for on-board satellite navigation

Author(s):  
A. Dion ◽  
E. Boutillon ◽  
V. Calmettes ◽  
E. Liegon
2020 ◽  
Vol 73 (5) ◽  
pp. 1052-1068
Author(s):  
Abdul Malik Khan ◽  
Naveed Iqbal ◽  
Adnan Ahmed Khan ◽  
Muhammad Faisal Khan ◽  
Attiq Ahmad

A spoofing attack on a global navigation satellite system (GNSS) receiver is a threat to a significant community of GNSS users due to the high stakes involved. This paper investigates the use of slope based metrics for the detection of spoofing. The formulation of slope based metrics involves monitoring correlators along with tracking correlators in the receiver's channel, which are slaved to the prompt tracking correlator. In this study, using some candidate metrics, detectors have been formed through the analysis of simulated spoofing attacks. A theoretical variance of each metric has also been calculated as a reference for the threshold. A threshold is estimated using the measured variance from the clean signals, for specific false alarm rate. By using the measured threshold, detectors are formed based on slope metrics. These detectors have been tested using TEXBAT data. The results show that the differential slope metrics have good performance. The results have also been compared with some other techniques of spoofing detection.


2019 ◽  
Vol 25 (3) ◽  
pp. 69-73
Author(s):  
Vlad-Cosmin Vasile ◽  
Corina Naforniţa ◽  
Monica Borda ◽  
Teodor Mitrea

Abstract This paper describes the particularities of satellite navigation on the territory of Romania in search of solutions to improve the accuracy of these systems. The performance of a Global Navigation Satellite System (GNSS) is influenced by many factors, including distortion of the signal, the influence of the ionosphere and the troposphere, multipath propagation. Some of these factors depend on the geographical position and the environment in which the navigation system is used. Moreover, Romania is located at the border of coverage of two Satellite Based Augmentation Systems (SBAS) – European Geostationary Navigation Overlay Service (EGNOS) and System for Differential Corrections and Monitoring (SDCM) which leads to some peculiarities regarding satellite navigation.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3939 ◽  
Author(s):  
Mariusz Specht ◽  
Cezary Specht ◽  
Henryk Lasota ◽  
Piotr Cywiński

The performance of bathymetric measurements by traditional methods (using manned vessels) in ultra-shallow waters, i.e., lakes, rivers, and sea beaches with a depth of less than 1 m, is often difficult or, in many cases, impossible due to problems related to safe vessel maneuvering. For this reason, the use of shallow draft hydrographic Unmanned Surface Vessels (USV) appears to provide a promising alternative method for performing such bathymetric measurements. This article describes the modernisation of a USV to switch from manual to automatic mode, and presents a preliminary study aimed at assessing the suitability of a popular autopilot commonly used in Unmanned Aerial Vehicles (UAV), and a low-cost multi-Global Navigation Satellite System (GNSS) receiver cooperating with it, for performing bathymetric measurements in automated mode, which involves independent movement along a specified route (hydrographic sounding profiles). The cross track error (XTE) variable, i.e., the distance determined between a USV’s position and the sounding profile, measured transversely to the course, was adopted as the measure of automatic control precision. Moreover, the XTE value was statistically assessed in the publication.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fahad Alhomayani ◽  
Mohammad H. Mahoor

AbstractIn recent years, fingerprint-based positioning has gained researchers’ attention since it is a promising alternative to the Global Navigation Satellite System and cellular network-based localization in urban areas. Despite this, the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions constitutes a high entry barrier for studies. As an effort to overcome this barrier and foster new research efforts, this paper presents OutFin, a novel dataset of outdoor location fingerprints that were collected using two different smartphones. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 reference points. Each site is different in terms of its visibility to the Global Navigation Satellite System and reference points’ number, arrangement, and spacing. Before OutFin was made available to the public, several experiments were conducted to validate its technical quality.


2010 ◽  
Vol 63 (2) ◽  
pp. 269-287 ◽  
Author(s):  
S. Abbasian Nik ◽  
M. G. Petovello

These days, Global Navigation Satellite System (GNSS) technology plays a critical role in positioning and navigation applications. Use of GNSS is becoming more of a need to the public. Therefore, much effort is needed to make the civilian part of the system more accurate, reliable and available, especially for the safety-of-life purposes. With the recent revitalization of Russian Global Navigation Satellite System (GLONASS), with a constellation of 20 satellites in August 2009 and the promise of 24 satellites by 2010, it is worthwhile concentrating on the GLONASS system as a method of GPS augmentation to achieve more reliable and accurate navigation solutions.


2021 ◽  
Vol 13 (11) ◽  
pp. 2032
Author(s):  
Junchan Lee ◽  
Sunil Bisnath ◽  
Regina S.K. Lee ◽  
Narin Gavili Kilane

This paper describes a computation method for obtaining dielectric constant using Global Navigation Satellite System reflectometry (GNSS-R) products. Dielectric constant is a crucial component in the soil moisture retrieval process using reflected GNSS signals. The reflectivity for circular polarized signals is combined with the dielectric constant equation that is used for radiometer observations. Data from the Cyclone Global Navigation Satellite System (CYGNSS) mission, an eight-nanosatellite constellation for GNSS-R, are used for computing dielectric constant. Data from the Soil Moisture Active Passive (SMAP) mission are used to measure the soil moisture through its radiometer, and they are considered as a reference to confirm the accuracy of the new dielectric constant calculation method. The analyzed locations have been chosen that correspond to sites used for the calibration and validation of the SMAP soil moisture product using in-situ measurement data. The retrieved results, especially in the case of a specular point around Yanco, Australia, show that the estimated results track closely to the soil moisture results, and the Root Mean Square Error (RMSE) in the estimated dielectric constant is approximately 5.73. Similar results can be obtained when the specular point is located near the Texas Soil Moisture Network (TxSON), USA. These results indicate that the analysis procedure is well-defined, and it lays the foundation for obtaining quantitative soil moisture content using the GNSS reflectometry results. Future work will include applying the computation product to determine the characteristics that will allow for the separation of coherent and incoherent signals in delay Doppler maps, as well as to develop local soil moisture models.


Sign in / Sign up

Export Citation Format

Share Document