CNN hardware acceleration on a low-power and low-cost APSoC

Author(s):  
Paolo Meloni ◽  
Antonio Garufi ◽  
Gianfranco Deriu ◽  
Marco Carreras ◽  
Daniela Loi
2022 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Erez Manor ◽  
Avrech Ben-David ◽  
Shlomo Greenberg

The use of RISC-based embedded processors aimed at low cost and low power is becoming an increasingly popular ecosystem for both hardware and software development. High-performance yet low-power embedded processors may be attained via the use of hardware acceleration and Instruction Set Architecture (ISA) extension. Recent publications of AI have demonstrated the use of Coordinate Rotation Digital Computer (CORDIC) as a dedicated low-power solution for solving nonlinear equations applied to Neural Networks (NN). This paper proposes ISA extension to support floating-point CORDIC, providing efficient hardware acceleration for mathematical functions. A new DMA-based ISA extension approach integrated with a pipeline CORDIC accelerator is proposed. The CORDIC ISA extension is directly interfaced with a standard processor data path, allowing efficient implementation of new trigonometric ALU-based custom instructions. The proposed DMA-based CORDIC accelerator can also be used to perform repeated array calculations, offering a significant speedup over software implementations. The proposed accelerator is evaluated on Intel Cyclone-IV FPGA as an extension to Nios processor. Experimental results show a significant speedup of over three orders of magnitude compared with software implementation, while applied to trigonometric arrays, and outperforms the existing commercial CORDIC hardware accelerator.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 73
Author(s):  
Francesco Ratto ◽  
Tiziana Fanni ◽  
Luigi Raffo ◽  
Carlo Sau

With the diffusion of cyber-physical systems and internet of things, adaptivity and low power consumption became of primary importance in digital systems design. Reconfigurable heterogeneous platforms seem to be one of the most suitable choices to cope with such challenging context. However, their development and power optimization are not trivial, especially considering hardware acceleration components. On the one hand high level synthesis could simplify the design of such kind of systems, but on the other hand it can limit the positive effects of the adopted power saving techniques. In this work, the mutual impact of different high level synthesis tools and the application of the well known clock gating strategy in the development of reconfigurable accelerators is studied. The aim is to optimize a clock gating application according to the chosen high level synthesis engine and target technology (Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA)). Different levels of application of clock gating are evaluated, including a novel multi level solution. Besides assessing the benefits and drawbacks of the clock gating application at different levels, hints for future design automation of low power reconfigurable accelerators through high level synthesis are also derived.


ACS Omega ◽  
2021 ◽  
Author(s):  
Yulong Chen ◽  
Mingjie Li ◽  
Wenjun Yan ◽  
Xin Zhuang ◽  
Kar Wei Ng ◽  
...  

2013 ◽  
Vol 418 ◽  
pp. 63-69
Author(s):  
Sema Patchim ◽  
Watcharin Po-Ngaen

In last decade, energy efficiency of hydraulic actuators systems has been especially important in industrial machinery applications [1-. And an advanced electronics world most of the applications are developed by microcontroller based embedded system. Energy processor based variable oil flow of hydraulic controller was presented to improve the efficiency of the motor by maintaining with the load sensing. These PIC processor combined with fuzzy controller were help to design efficient optimal power hydraulic machine controller. A functional design of processor and in this system was completed by using load sensing signal to control oil flow. The advantage of the proposed system was optimized operational performance and low power utility. Without having the architectural concept of any motor we can control it by using this method. This is a low cost low power controller and easy to use. The experiment results verified its validity.


Sign in / Sign up

Export Citation Format

Share Document