Outlook of oxide-aluminum coating application for wear resistance increase of the machine parts and cutting tool

Author(s):  
G.I. Kostyuk ◽  
O.V. Pylinin ◽  
E.G. Skorik
2019 ◽  
Vol 49 (11) ◽  
pp. 800-805
Author(s):  
A. O. Gorlenko ◽  
S. V. Davydov ◽  
M. Yu. Shevtsov ◽  
D. A. Boldyrev

2017 ◽  
Vol 2 (2) ◽  
pp. 19-24 ◽  
Author(s):  
Анатолий Суслов ◽  
Anatoliy Suslov ◽  
Михаил Шалыгин ◽  
Mikhail Shalygin

In the paper there is considered a problem of wear-resistance increase in parts operating in hydrogen environment. The dependence of friction surface wear taking into account their sub-roughness and hydrogen existence is shown. A technology for a friction couple wear-resistance increase is offered including surface layer granularity decrease, the reduction of hydrogen content in an inter-grain space and the introduction in the structure of parts surface layers the elements allowing filling up an inter-grain space. The results of comparative wear tests for different technologies for wear-resistance increase are shown. It is defined that the technology offered allows increasing wear-resistance in friction surfaces in machine parts. A method for account of hydrogen existence in an inter-grain space is offered and a reasonable method for obtaining a numerical value of a factor taking into account hydrogen presence used for theoretical computations.


Alloy Digest ◽  
1971 ◽  
Vol 20 (1) ◽  

Abstract AISI Type L6 is recommended for tools, dies and machine parts which must develop a rather high degree of hardness, wear resistance and compressive strength combined with toughness. This datasheet provides information on composition, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-232. Producer or source: Tool steel mills.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1153
Author(s):  
Ivan Pavlenko ◽  
Jozef Zajac ◽  
Nadiia Kharchenko ◽  
Ján Duplák ◽  
Vitalii Ivanov ◽  
...  

This article deals with improving the wear resistance of multilayer coatings as a fundamental problem in metal surface treatment, strengthening elements of cutting tools, and ensuring the reliability of machine parts. It aims to evaluate the wear depth for multilayer coatings by the mass loss distribution in layers. The article’s primary purpose is to develop a mathematical method for assessing the value of wear for multilayer steel-based coatings. The study material is a multilayer coating applied to steel DIN C80W1. The research was performed using up-to-date laboratory equipment. Nitrogenchroming has been realized under overpressure in two successive stages: nitriding for 36 h at temperature 540 °C and chromizing during 4 h at temperature 1050 °C. The complex analysis included several options: X-ray phase analysis, local micro-X-ray spectral analysis, durometric analysis, and determination of wear resistance. These analyses showed that after nitrogenchroming, the three-layer protective coating from Cr23C6, Cr7C3, and Cr2N was formed on the steel surface. Spectral analysis indicated that the maximum amount of chromium 92.2% is in the first layer from Cr23C6. The maximum amount of carbon 8.9% characterizes the layer from Cr7C3. Nitrogen is concentrated mainly in the Cr2N layer, and its maximum amount is 9.4%. Additionally, it was determined that the minimum wear is typical for steel DIN C80W1 after nitrogenchroming. The weight loss of steel samples by 25 mg was obtained. This value differs by 3.6% from the results evaluated analytically using the developed mathematical model of wear of multilayer coatings after complex metallization of steel DIN C80W1. As a result, the impact of the loading mode on the wear intensity of steel was established. As the loading time increases, the friction coefficient of the coated samples decreases. Among the studied samples, plates from steel DIN C80W1 have the lowest friction coefficient after nitrogenchroming. Additionally, a linear dependence of the mass losses on the wearing time was obtained for carbide and nitride coatings. Finally, an increase in loading time leads to an increase in the wear intensity of steels after nitrogenchroming. The achieved scientific results are applicable in developing methods of chemical-thermal treatment, improving the wear resistance of multilayer coatings, and strengthening highly loaded machine parts and cutting tools.


2015 ◽  
Vol 818 ◽  
pp. 61-64 ◽  
Author(s):  
Norbert Radek ◽  
Jozef Bronček ◽  
Peter Fabian ◽  
Jacek Pietraszek ◽  
Krzysztof Antoszewski

The paper is concerned with the performance properties of electro-spark deposited coatings, which were determined basing on microstructural and roughness analysis and application tests. The studies were conducted using of the tungsten carbide-ceramic electrodes produced by the powder metallurgy hot pressing route. The anti-wear coatings were electro-spark deposited over C45 carbon steel by means of an EIL-8A. These coatings are likely to be applied to increase the abrasive wear resistance of tools and machine parts.


1996 ◽  
Vol 11 (7) ◽  
pp. 1765-1775 ◽  
Author(s):  
James M. Olson ◽  
Michael J. Dawes

Thin diamond film coated WC-Co cutting tool inserts were produced using arc-jet and hot-filament chemical vapor deposition. The diamond films were characterized using SEM, XRD, and Raman spectroscopy to examine crystal structure, fracture mode, thickness, crystalline orientation, diamond quality, and residual stress. The performance of the tools was evaluated by comparing the wear resistance of the materials to brazed polycrystalline diamond-tipped cutting tool inserts (PCD) while machining A390 aluminum (18% silicon). Results from the experiments carried out in this study suggest that the wear resistance of the thin diamond films is primarily related to the grain boundary strength, crystal orientation, and the density of microdefects in the diamond film.


2014 ◽  
Vol 1017 ◽  
pp. 329-333
Author(s):  
Syunki Shimada ◽  
Masao Kohzaki

This study is developing environmentally friendly cutting technologies of difficult-to-machine materials by MQL (Minimum Quantity Lubrication) cutting with Ti-B coated tools. In this research, we performed cutting experiments of difficult-to-machine materials in dry, MQL and wet conditions with non-coated tools. Cutting resistance in the MQL cutting was almost the same as that in the wet cutting. Moreover, damage of the cutting tool was not observed after the MQL cutting. Therefore the MQL cutting is expected to become an advanced cutting technology by using Ti-B coated tools because Ti-B film had high temperature lubricating properties and high wear resistance.


Author(s):  
Anatoly M. Buglaev ◽  

Choosing effective methods and devices for surface hardening of wood-cutting tools is problematic due to the variety of their designs and operating conditions. In this regard, the development of such devices becomes an urgent task. According to the literature, one of the effective methods for increasing the service life of machine parts and tools is electrospark hardening or electrospark alloying. Industrial electrospark installations such as “EFI” (electrophysical measurements) and “Elitron” with manual vibrators are used for electrospark hardening. However, using manual vibrators significantly increases the labour intensity and hardening time. Moreover, the surface quality after hardening with manual vibrators is often unsatisfactory. Various mechanized installations have been developed in order to reduce the labour intensity of electrospark hardening. Nevertheless, these installations are designed to harden specific parts and do not allow hardening tools of various designs, including woodcutting tools. The surface quality after hardening in mechanized installations does not always satisfy the customer. Further surface plastic deformation treatments, such as rolling and unrolling with rollers and balls, as well as diamond burnishing, are often used to improve the surface quality after electrospark hardening. The surface quality after additional processing by these methods boosts, although the labour intensity and cost of the hardening process increase. To increase the wear resistance of machine parts and tools, it is reasonable to reduce the height parameters of roughness, increase microhardness, and form the residual compressive stresses, which is ensured by the methods of surface plastic deformation. In this regard, it becomes necessary to use electrospark hardening simultaneously with surface plastic deformation. The work presents the design and features of using the device for hardening. The device was used to strengthen the thicknesser machine knives, which made it possible to almost double their durability. Applying this device, in comparison with using the electrospark hardening with a manual vibrator, reduces the roughness of the hardened surface and improves the surface quality of the processed workpieces. The modes of hardening have been installed, making it possible to effectively harden wood-cutting tools. For citation: Buglaev A.M. Device for Wood-Cutting Tool Hardening. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 5, pp. 134–141. DOI: 10.37482/0536-1036-2021-5-134-141


2013 ◽  
Vol 59 (No. 1) ◽  
pp. 16-22 ◽  
Author(s):  
M. Müller ◽  
P. Hrabě

We evaluated a degree of the machine part abrasive wear with secondary focus on their hardness. The paper states laboratory results of overlay systems from their wear resistance point of view. Laboratory experiments were carried out by two-body abrasion on bonded abrasive of a P120 granularity. The results proved an increased abrasive wear resistance of martensitic, ledeburitic and stellitic overlays against eleven different original products. The overlay UTP Ledurit 60 reached the optimum values. The GD-OES (Glow Discharge Optical Emission Spectroscopy) method proved the different chemical composition of the overlay from the stated chemical composition of the overlaying electrode.    


2020 ◽  
Vol 30 ◽  
pp. 388-392
Author(s):  
Sergey Fedorov ◽  
Lilia Fedorova ◽  
Vadim Zaripov ◽  
Yuliya Ivanova ◽  
Maxim Vlasov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document