Analysis of Possibilities and Effectiveness of Combine Rough Sets and Neighborhood Theories for Solving Dynamic Scheduling Problem

Author(s):  
Henryk Piech
2009 ◽  
Vol 16-19 ◽  
pp. 743-747
Author(s):  
Yu Wu ◽  
Xin Cun Zhuang ◽  
Cong Xin Li

Solve the flexible dynamic scheduling problem by using “dynamic management & static scheduling” method. Aim at the property of flexible Manufacturing systems, the dynamic scheduling methods are analyzed and a coding method based on working procedure is improved in this paper. Thus it can be efficiently solve the problem of multiple working routes selection under the active distribution principle. On the other hand, the self-adaptive gene is provided and the parameters of the genetic algorithm are defined. In such a solution, the scheduling is confirmed to be simple and efficient.


2012 ◽  
Vol 271-272 ◽  
pp. 650-656
Author(s):  
Zhi Bing Lu ◽  
Ai Min Wang ◽  
Cheng Tong Tang ◽  
Jing Sheng Li

For the rapid response to production scheduling problem driven by high-density production tasks, a dynamic scheduling technology for the large precision strip products assembly with a mixture of task time nodes and line-rail space is proposed. A scheduling constrained model containing coverage, proximity, timeliness and resource is established. A linear rail space production scheduling technology using heuristic automatic scheduling and event-driven method is put forward. The time rule based on delivery and single completion assembly is formed, at the same time the space rule based on the adjacent rail and comprehensive utilization is researched. Supposing the privilege of single product assembling as the core, the scheduling parts filter method based on multiple constraints and former rules. For the space layout problem, a clingy forward and backward algorithms is proposed to judge the assemble position regarding the space comprehensive utilization rate. The classification of the various disturbances in the actual production is summarized. Three basic algorithms are proposed, including insertion, moving and re-scheduling algorithm, in order to solve the assembly dynamic scheduling problem driven by production disturbance events. Finally, take rocket as the example, the rocket assembly space production scheduling system is developed, combining with the proposed algorithm. The practicability of the system is validated using real data.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1430 ◽  
Author(s):  
Jintian Cui ◽  
Xin Zhang

Emergency observations are missions executed by Earth observation satellites to support urgent ground operations. Emergency observations become more important for meeting the requirements of highly dynamic and highly time-sensitive observation missions, such as disaster monitoring and early warning. Considering the complex scheduling problem of Earth observation satellites under emergency conditions, a multi-satellite dynamic mission scheduling model based on mission priority is proposed in this paper. A calculation model of mission priority is designed for emergency missions based on seven impact factors. In the satellite mission scheduling, the resource constraints of scheduling are analyzed in detail, and the optimization objective function is built to maximize the observation mission priority and mission revenues, and minimize the waiting time for missions that require urgency for execution time. Then, the hybrid genetic tabu search algorithm is used to obtain the initial satellite scheduling plan. In case of the dynamic arrival of new emergency missions before scheduling plan releases, a dynamic scheduling algorithm based on mission priority is proposed to solve the scheduling problem caused by newly arrived missions and to obtain the scheduling plan of newly arrived missions. A simulation experiment was conducted for different numbers of initial missions and newly arrived missions, and the scheduling results were evaluated with a model performance evaluation function. The results show that the execution probability of high-priority missions increased because the mission priority was taken into account in the model. In the case of more satellite resources, when new missions dynamically arrived, the satellite resources can be reasonably allocated to these missions based on the mission priority. Overall, this approach reduces the complexity of the dynamic adjustment and maintains the stability of the initial scheduling plan.


2008 ◽  
Vol 07 (02) ◽  
pp. 249-252 ◽  
Author(s):  
HELAN LIANG ◽  
SUJIAN LI

Focusing on the limitations of the traditional Continuous Casting-Direct Hot Charge Rolling (CC-DHCR) planning and scheduling methods that rarely consider dynamic scheduling problems, a new method is put forward. The key idea is to make out clusters and integrated plans in the planning layer, and then to adjust the rolling sequences according to the slab cluster-based strategy in the dynamic scheduling layer. Results of the test with data from practical production process show that the method can effectively solve the CC-DHCR planning and scheduling problem and increase the DHCR ratio.


2014 ◽  
Vol 685 ◽  
pp. 439-443
Author(s):  
Tang Kui Li ◽  
Jia Juan Chen

In this paper, for the drop and pull vehicles scheduling problem with " One Line Two Point"models which is considered that varieties of constraints, such as trailer number constraints, time window constraints and so on, to establish model of dynamic vehicles scheduling, based on trailer wait for the consignment total time as optimization goals. And method is designed to optimize initial scheduling results by dynamic scheduling by changing of time.


Author(s):  
Tsubasa Matsuo ◽  
◽  
Masahiro Inuiguchi ◽  
Kenichiro Masunaga ◽  

Scheduling of semiconductor wafer testing processes can be seen as a resource constraint project scheduling problem (RCPSP). However, it includes uncertainties caused by human factors, wafer errors and so on. Because some uncertainties are not simply quantitative, range estimation of the parameters would not be very useful. Considering such uncertainties, finding a good situation-dependent dispatching rule would be more suitable than solving the RCPSP under uncertainties. In this paper we apply the Pitts approach, one of the genetic algorithms, to the situation-dependent dispatching rule acquisition. We compare the obtained rule with the simple dispatching rules and examine the effectiveness and usefulness of the obtained rule in the problems with unpredictable wafer errors.


2011 ◽  
Vol 383-390 ◽  
pp. 6236-6241
Author(s):  
Nyeoh Cheng Ying ◽  
Mohzani Bin Mokhtar

In today’s highly competitive market, laser cutting which has a characteristic of “make to order” and high product variety is under pressure to reduce costs, to increase productivity and to respond to the rapidly changing demands from customers. To maintain the competitive advantage, companies need to have a real-time dynamic scheduling system, which can handle large combinations of jobs, allowing sequencing of jobs to achieve multi-objective goals. Motivated by a real-life scheduling problem in a sheet metal processing company in Malaysia, this research addressed single machine scheduling problem with sequence-dependent setup times and group technology assumption to minimize makespan and with the secondary objective of minimizing setup times. The focus of this paper is on developing a simple heuristic algorithm based dynamic scheduling system. This algorithm has been coded in vb.net and is integrated with a database system. The scheduling system developed is verified and validated by comparing to the actual production run. Results show that the algorithm model can find good solutions within short computational time.


Author(s):  
Wei Li ◽  
Furong Tian ◽  
Ke Li

Rail guide vehicle (RGV) problems have the characteristics of fast running, stable performance, and high automation. RGV dynamic scheduling has a great impact on the working efficiency of an entire automated warehouse. However, the relative intelligent optimization research of different workshop components for RGV dynamic scheduling problems are insufficient scheduling in the previous works. They appear idle when waiting, resulting in reduced operating efficiency during operation. This article proposes a new distance landscape strategy for the RGV dynamic scheduling problems. In order to solve the RGV dynamic scheduling problem more effectively, experiments are conducted based on the type of computer numerical controller (CNC) with two different procedures programming model in solving the RGV dynamic scheduling problems. The experiment results reveal that this new distance landscape strategy can provide promising results and solves the considered RGV dynamic scheduling problem effectively.


Sign in / Sign up

Export Citation Format

Share Document