Determining Edge Node Real-Time Capabilities

Author(s):  
Varun Gowtham ◽  
Oliver Keil ◽  
Aniket Yeole ◽  
Florian Schreiner ◽  
Simon Tschoke ◽  
...  
Keyword(s):  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiang Yu ◽  
Chun Shan ◽  
Jilong Bian ◽  
Xianfei Yang ◽  
Ying Chen ◽  
...  

With the rapid development of Internet of Things (IoT), massive sensor data are being generated by the sensors deployed everywhere at an unprecedented rate. As the number of Internet of Things devices is estimated to grow to 25 billion by 2021, when facing the explicit or implicit anomalies in the real-time sensor data collected from Internet of Things devices, it is necessary to develop an effective and efficient anomaly detection method for IoT devices. Recent advances in the edge computing have significant impacts on the solution of anomaly detection in IoT. In this study, an adaptive graph updating model is first presented, based on which a novel anomaly detection method for edge computing environment is then proposed. At the cloud center, the unknown patterns are classified by a deep leaning model, based on the classification results, the feature graphs are updated periodically, and the classification results are constantly transmitted to each edge node where a cache is employed to keep the newly emerging anomalies or normal patterns temporarily until the edge node receives a newly updated feature graph. Finally, a series of comparison experiments are conducted to demonstrate the effectiveness of the proposed anomaly detection method for edge computing. And the results show that the proposed method can detect the anomalies in the real-time sensor data efficiently and accurately. More than that, the proposed method performs well when there exist newly emerging patterns, no matter they are anomalous or normal.


2018 ◽  
Vol 67 (9) ◽  
pp. 8637-8646 ◽  
Author(s):  
Wei Zhao ◽  
Jiajia Liu ◽  
Takahiro Hara
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Xingmin Ma ◽  
Shenggang Xu ◽  
Fengping An ◽  
Fuhong Lin

Owning to the high processing complexity, the image restoration can only be processed offline and hardly be applied in the real-time production life. The development of edge computing provides a new solution for real-time image restoration. It can upload the original image to the edge node to process in real time and then return results to users immediately. However, the processing capacity of the edge node is still limited which requires a lightweight image restoration algorithm. A novel real-time image restoration algorithm is proposed in edge computing. Firstly, 10 classical functions are used to determine the population size and maximum iteration times of traction fruit fly optimization algorithm (TFOA). Secondly, TFOA is used to optimize the optimal parameters of least squares support vector regression (LSSVR) kernel function, and the error function of image restoration is taken as an adaptive function of TFOA. Thirdly, the LLSVR algorithm is used to restore the image. During the image restoration process, the training process is to establish a mapping relationship between the degraded image and the adjacent pixels of the original image. The relationship is established; the degraded image can be restored by using the mapping relationship. Through the comparison and analysis of experiments, the proposed method can meet the requirements of real-time image restoration, and the proposed algorithm can speed up the image restoration and improve the image quality.


Author(s):  
Wei Zhao ◽  
Lianwei Zhu ◽  
Xuangou Wu ◽  
Zhi Liu ◽  
Xiujun Wang ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Medien Zeghid ◽  
Kamal Amaseb ◽  
Hassan Yousif Ahmed ◽  
Akhtar Nawaz Khan ◽  
Abdellah Chehri ◽  
...  

2020 ◽  
Vol 10 (7) ◽  
pp. 2334
Author(s):  
Jieun Kang ◽  
Svetlana Kim ◽  
Jaeho Kim ◽  
NakMyoung Sung ◽  
YongIk Yoon

With the development of the Internet of Things (IoT), the amount of data is growing and becoming more diverse. There are several problems when transferring data to the cloud, such as limitations on network bandwidth and latency. That has generated considerable interest in the study of edge computing, which processes and analyzes data near the network terminals where data is causing. The edge computing can extract insight data from a large number of data and provide fast essential services through simple analysis. The edge computing has a real-time advantage, but also has disadvantages, such as limited edge node capacity. The edge node for edge computing causes overload and delays in completing the task. In this paper, we proposes an efficient offloading model through collaboration between edge nodes for the prevention of overload and response to potential danger quickly in emergencies. In the proposed offloading model, the functions of edge computing are divided into data-centric and task-centric offloading. The offloading model can reduce the edge node overload based on a centralized, inefficient distribution and trade-off occurring in the edge node. That is the leading cause of edge node overload. So, this paper shows a collaborative offloading model in edge computing that guarantees real-time and prevention overload prevention based on data-centric offloading and task-centric offloading. Also, we present an intelligent offloading model based on several scenarios of forest fire ignition.


1979 ◽  
Vol 44 ◽  
pp. 41-47
Author(s):  
Donald A. Landman

This paper describes some recent results of our quiescent prominence spectrometry program at the Mees Solar Observatory on Haleakala. The observations were made with the 25 cm coronagraph/coudé spectrograph system using a silicon vidicon detector. This detector consists of 500 contiguous channels covering approximately 6 or 80 Å, depending on the grating used. The instrument is interfaced to the Observatory’s PDP 11/45 computer system, and has the important advantages of wide spectral response, linearity and signal-averaging with real-time display. Its principal drawback is the relatively small target size. For the present work, the aperture was about 3″ × 5″. Absolute intensity calibrations were made by measuring quiet regions near sun center.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.


Sign in / Sign up

Export Citation Format

Share Document