Intelligent Security Measures for Smart Cyber Physical Systems

Author(s):  
Muhammad Shafique ◽  
Faiq Khalid ◽  
Semeen Rehman
Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


Author(s):  
Sara Baldoni ◽  
Giuseppe Celozzi ◽  
Alessandro Neri ◽  
Marco Carli ◽  
Federica Battisti

AbstractCyber physical systems are becoming ubiquitous devices in many fields thus creating the need for effective security measures. We propose to exploit their intrinsic dependency on the environment in which they are deployed to detect and mitigate anomalies. To do so, sensor measurements, network metrics, and contextual information are fused in a unified security architecture. In this paper, the model of the proposed framework is presented and a first proof of concept involving a telecommunication infrastructure case study is provided.


2020 ◽  
Vol 9 (3) ◽  
pp. 37 ◽  
Author(s):  
Nader Mohamed ◽  
Jameela Al-Jaroodi ◽  
Imad Jawhar

Cyber–Physical Systems (CPS) connect the physical world (systems, environments, and humans) with the cyber world (software, data, etc.) to intelligently enhance the operational environment they serve. CPS are distributed software and hardware components embedded in the physical world and possibly attached to humans. They offer smart features, such as enhancing and optimizing the reliability, quality, safety, health, security, efficiency, operational costs, sustainability, and maintainability of physical systems. CPS are also very vulnerable to security attacks and criminal activities. In addition, they are very complex and have a direct impact on their environment. Therefore, it is hard to detect and investigate security attacks, while such attacks may have a catastrophic impact on the physical world. As a result, CPS must incorporate security measures in addition to suitable and effective forensics capabilities. When the security measures fail and an attack occurs, it becomes imperative to perform thorough forensics analysis. Adding effective forensics tools and capabilities will support the investigations of incidents. This paper defines the field of CPS forensics and its dimensions: Technical, Organizational, and Legal. Then, it reviews examples of current research efforts in the field and the types of tools and methods they propose for CPS forensics. In addition, it discusses the issues and challenges in the field that need to be addressed by researchers and developers of CPS. The paper then uses the review outcomes to discuss future research directions to address challenges and create a more effective, efficient, and safe forensics tools and for CPS. This discussion aims to create a starting point for researchers where they can identify the gaps and challenges and create suitable solutions through their research in CPS forensics.


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
A. V. Smirnov ◽  
T. V. Levashova

Introduction: Socio-cyber-physical systems are complex non-linear systems. Such systems display emergent properties. Involvement of humans, as a part of these systems, in the decision-making process contributes to overcoming the consequences of the emergent system behavior, since people can use their experience and intuition, not just the programmed rules and procedures.Purpose: Development of models for decision support in socio-cyber-physical systems.Results: A scheme of decision making in socio-cyber-physical systems, a conceptual framework of decision support in these systems, and stepwise decision support models have been developed. The decision-making scheme is that cybernetic components make their decisions first, and if they cannot do this, they ask humans for help. The stepwise models support the decisions made by components of socio-cyber-physical systems at the conventional stages of the decision-making process: situation awareness, problem identification, development of alternatives, choice of a preferred alternative, and decision implementation. The application of the developed models is illustrated through a scenario for planning the execution of a common task for robots.Practical relevance: The developed models enable you to design plans on solving tasks common for system components or on achievement of common goals, and to implement these plans. The models contribute to overcoming the consequences of the emergent behavior of socio-cyber-physical systems, and to the research on machine learning and mobile robot control.


Sign in / Sign up

Export Citation Format

Share Document