Monte Carlo filter particle filter

Author(s):  
Masaya Murata ◽  
Hidehisa Nagano ◽  
Kunio Kashino
2018 ◽  
Vol 7 (2.7) ◽  
pp. 12
Author(s):  
Penumarty Hiranmayi ◽  
Kola Sai Gowtham ◽  
S Koteswara Rao ◽  
V Gopi Tilak

The phenomenon of simple harmonic motion is more vigilantly explained using a simple pendulum. The angular motion of a pendulum is linear in nature. But the analysis of the motion along the horizontal direction is non-linear. To estimate this, several algorithms like the Kalman filter, Extended Kalman Filter etc. are adopted. Here in this paper, Particle filter is chosen which is a method to form Monte Carlo approximations to the solutions of Bayesian filtering equations. Sequential importance resampling based Particle filters are used where the filtering distributions are multi-nodal or consist of discrete state components since under these circumstances the Bayesian approximations do not always work well.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 606
Author(s):  
Alaa Jamal ◽  
Raphael Linker

Particle filter has received increasing attention in data assimilation for estimating model states and parameters in cases of non-linear and non-Gaussian dynamic processes. Various modifications of the original particle filter have been suggested in the literature, including integrating particle filter with Markov Chain Monte Carlo (PF-MCMC) and, later, using genetic algorithm evolutionary operators as part of the state updating process. In this work, a modified genetic-based PF-MCMC approach for estimating the states and parameters simultaneously and without assuming Gaussian distribution for priors is presented. The method was tested on two simulation examples on the basis of the crop model AquaCrop-OS. In the first example, the method was compared to a PF-MCMC method in which states and parameters are updated sequentially and genetic operators are used only for state adjustments. The influence of ensemble size, measurement noise, and mutation and crossover parameters were also investigated. Accurate and stable estimations of the model states were obtained in all cases. Parameter estimation was more challenging than state estimation and not all parameters converged to their true value, especially when the parameter value had little influence on the measured variables. Overall, the proposed method showed more accurate and consistent parameter estimation than the PF-MCMC with sequential estimation, which showed highly conservative behavior. The superiority of the proposed method was more pronounced when the ensemble included a large number of particles and the measurement noise was low.


2011 ◽  
Vol 130-134 ◽  
pp. 3311-3315
Author(s):  
Nai Gao Jin ◽  
Fei Mo Li ◽  
Zhao Xing Li

A CUDA accelerated Quasi-Monte Carlo Gaussian particle filter (QMC-GPF) is proposed to deal with real-time non-linear non-Gaussian problems. GPF is especially suitable for parallel implementation as a result of the elimination of resampling step. QMC-GPF is an efficient counterpart of GPF using QMC sampling method instead of MC. Since particles generated by QMC method provides the best-possible distribution in the sampling space, QMC-GPF can make more accurate estimation with the same number of particles compared with traditional particle filter. Experimental results show that our GPU implementation of QMC-GPF can achieve the maximum speedup ratio of 95 on NVIDIA GeForce GTX 460.


2005 ◽  
Vol 42 (4) ◽  
pp. 1053-1068 ◽  
Author(s):  
Anastasia Papavasiliou

Particle filters are Monte Carlo methods that aim to approximate the optimal filter of a partially observed Markov chain. In this paper, we study the case in which the transition kernel of the Markov chain depends on unknown parameters: we construct a particle filter for the simultaneous estimation of the parameter and the partially observed Markov chain (adaptive estimation) and we prove the convergence of this filter to the correct optimal filter, as time and the number of particles go to infinity. The filter presented here generalizes Del Moral's Monte Carlo particle filter.


2015 ◽  
Vol 33 (6) ◽  
pp. 943-974 ◽  
Author(s):  
Pierre Del Moral ◽  
Ajay Jasra ◽  
Anthony Lee ◽  
Christopher Yau ◽  
Xiaole Zhang

Author(s):  
SÜLEYMAN FATİH KARA ◽  
EMRE ÖZKAN

In this paper, we consider a variant of the extended target tracking (ETT) problem, namely the multiel- lipsoidal ETT problem. In multiellipsoidal ETT, target extent is represented by multiple ellipses, which correspond to the origin of the measurements on the target surface. The problem involves estimating the target’s kinematic state and solving the association problem between the measurements and the ellipses. We cast the problem in a sequential Monte Carlo (SMC) framework and investigate different marginalization strategies to find an efficient particle filter. Under the known extent assumption, we define association variables to find the correct association between the measurements and the ellipses; hence, the posterior involves both discrete and continuous random variables. By expressing the measurement likelihood as a mixture of Gaussians we derive and employ a marginalized particle filter for the independent association variables without sampling the discrete states. We compare the performance of the method with its alternatives and illustrate the gain in nonstandard marginalization.


2017 ◽  
Vol 145 (7) ◽  
pp. 2533-2553 ◽  
Author(s):  
Andreas S. Stordal ◽  
Hans A. Karlsen

In high-dimensional dynamic systems, standard Monte Carlo techniques that asymptotically reproduce the posterior distribution are computationally too expensive. Alternative sampling strategies are usually applied and among these the ensemble Kalman filter (EnKF) is perhaps the most popular. However, the EnKF suffers from severe bias if the model under consideration is far from linear. Another class of sequential Monte Carlo methods is kernel-based Gaussian mixture filters, which reduce the bias but maintain the robustness of the EnKF. Although many hybrid methods have been introduced in recent years, not many have been analyzed theoretically. Here it is shown that the recently proposed adaptive Gaussian mixture filter can be formulated in a rigorous Bayesian framework and that the algorithm can be generalized to a broader class of interpolated kernel filters. Two parameters—the bandwidth of the kernel and a weight interpolation factor—determine the filter performance. The new formulation of the filter includes particle filters, EnKF, and kernel-based Gaussian mixture filters as special cases. Techniques from particle filter literature are used to calculate the asymptotic bias of the filter as a function of the parameters and to derive a central limit theorem. The asymptotic theory is then used to determine the parameters as a function of the sample size in a robust way such that the error norm vanishes asymptotically, whereas the normalized error is sample independent and bounded. The parameter choice is tested on the Lorenz 63 model, where it is shown that the error is smaller or equal to the EnKF and the optimal particle filter for a varying sample size.


Sign in / Sign up

Export Citation Format

Share Document