Intelligent Compensation of Thermal Coupling Deformation for Tool Center Point using Chromatic Confocal Displacement Sensor

Author(s):  
Wen-Yang Chang ◽  
Bo-Yao Hsu ◽  
Jia-Wei Hsu ◽  
Ching-Feng Chen
2008 ◽  
Vol 128 (4) ◽  
pp. 289-297 ◽  
Author(s):  
Tsutomu Mizuno ◽  
Shigemi Enoki ◽  
Takashi Asahina ◽  
Takayuki Suzuki ◽  
Hiroyuki Maeda ◽  
...  

2018 ◽  
Author(s):  
Nicolò Bontempi ◽  
Irene Vassalini ◽  
Stefano Danesi ◽  
Matteo Ferroni ◽  
Paolo Colombi ◽  
...  

<p>Here we investigate for the first time the opto-thermal behavior of SiO<sub>2</sub>/Si core/shell microbeads (Si-rex) irradiated with three common Raman laser sources (lambda=532, 633, 785 nm) under real working conditions. We obtained an experimental proof of the critical role played by bead size and aggregation in heat and light management, demonstrating that in the case of strong opto-thermal coupling the temperature can exceed that of the melting points of both core and shell components. In addition, we also show that weakly coupled beads can be utilized as stable substrates for plasmon-free SERS experiments.</p>


2020 ◽  
Vol 10 (8) ◽  
pp. 2790
Author(s):  
Wenzheng Zhuang ◽  
Chao Yang ◽  
Zhigang Wu

Hybrid corrugated sandwich (HCS) plates have become a promising candidate for novel thermal protection systems (TPS) due to their multi-functionality of load bearing and thermal protection. For hypersonic vehicles, the novel TPS that performs some structural functions is a potential method of saving weight, which is significant in reducing expensive design/manufacture cost. Considering the novel TPS exposed to severe thermal and aerodynamic environments, the mechanical stability of the HCS plates under fluid-structure-thermal coupling is crucial for preliminary design of the TPS. In this paper, an innovative layerwise finite element model of the HCS plates is presented, and coupled fluid-structure-thermal analysis is performed with a parameter study. The proposed method is validated to be accurate and efficient against commercial software simulation. Results have shown that the mechanical instability of the HCS plates can be induced by fluid-structure coupling and further accelerated by thermal effect. The influences of geometric parameters on thermal buckling and dynamic stability present opposite tendencies, indicating a tradeoff is required for the TPS design. The present analytical model and numerical results provide design guidance in the practical application of the novel TPS.


2019 ◽  
Vol 19 (21) ◽  
pp. 9680-9687 ◽  
Author(s):  
Yating Yu ◽  
Hanchao Li ◽  
Ke Xue ◽  
Dahuan Liu ◽  
Geng Gao

Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 863 ◽  
Author(s):  
Weiqing Huang ◽  
Mengxin Sun

A piezoelectric actuator using a lever mechanism is designed, fabricated, and tested with the aim of accomplishing long-travel precision linear driving based on the stick-slip principle. The proposed actuator mainly consists of a stator, an adjustment mechanism, a preload mechanism, a base, and a linear guide. The stator design, comprising a piezoelectric stack and a lever mechanism with a long hinge used to increase the displacement of the driving foot, is described. A simplified model of the stator is created. Its design parameters are determined by an analytical model and confirmed using the finite element method. In a series of experiments, a laser displacement sensor is employed to measure the displacement responses of the actuator under the application of different driving signals. The experiment results demonstrate that the velocity of the actuator rises from 0.05 mm/s to 1.8 mm/s with the frequency increasing from 30 Hz to 150 Hz and the voltage increasing from 30 V to 150 V. It is shown that the minimum step distance of the actuator is 0.875 μm. The proposed actuator features large stroke, a simple structure, fast response, and high resolution.


Sign in / Sign up

Export Citation Format

Share Document