Moisture and temperature effects on the reliability of interfacial adhesion of a polymer/metal interface

Author(s):  
T.P. Ferguson ◽  
Jianmin Qu
2002 ◽  
Vol 124 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Qizhou Yao ◽  
Jianmin Qu

Debonding of polymer-metal interfaces often involves both interfacial and cohesive failure. Since the cohesive strength of polymers is usually much greater than the polymer-metal interfacial strength, cohesive failure near the interface is usually desired for enhancing the interfacial adhesion. Roughened surfaces generally produce more cohesive failure; therefore, they are used commonly in practice to obtain better adhesion. This paper develops a fracture mechanics model that can be used to quantitatively predict the amount of cohesive failure once the surface roughness data are given. An epoxy/Al interface was investigated using this fracture mechanics model. The predicted amount of cohesive failure as a function of surface roughness compares very well with the experimentally measured values. It is believed that this model can be extended to other polymer–metal interfaces. Contributed by the Electronic and Photonic Packaging Division for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received by the EPPD.


2013 ◽  
Vol 577-578 ◽  
pp. 225-228 ◽  
Author(s):  
Olaf van der Sluis ◽  
Joris J.C. Remmers ◽  
M.A.C. Thurlings ◽  
B.J. Welling ◽  
Sander P.M. Noijen

It is Common Practice for Polymer-Metal Interfaces, Frequently Encountered in Microelec-Tronic Devices, to Improve Adhesion by Surface Roughening or Micro-Patterning. the Competitionbetween Adhesive Fracture and Cohesive Fracture in the Vicinity of a Patterned Interface, i.e., Inter-Face Crack Deflection, is One of these Key Mechanisms that Contribute Significantly to the Macroscopicadhesion. in this Paper, these Fracture Phenomena are Described Simultaneously by Cohesive Zoneelements with an Exponential Traction-Separation Law (TSL) for the Adhesive Failure and an Initiallyrigid, Exponentially Decaying, TSL for the Cohesive Failure. it is Demonstrated that the Conditions Atwhich Crack Kinking Occurs are Dominated by Fracture Strength Values as Opposed to the Commonlyused Fracture Toughness Values. Experimental Verification is Performed by Means of Four Point Bend-Ing Tests on Specifically Designed Micro-Patterned Polymer-Metal Samples.


Author(s):  
T. Du ◽  
M. Liu ◽  
S. Seghi ◽  
K.J. Hsia ◽  
J. Economy ◽  
...  

Author(s):  
Timothy P. Ferguson ◽  
Jianmin Qu

Based on interfacial fracture mechanics and the hydrophobicity of the interface, en engineering model was developed in this paper. Using this model, one can predicted the degradation of interfacial fracture toughness of a polymer/metal interface once the moisture concentration near the interface is known.


1993 ◽  
Vol 304 ◽  
Author(s):  
T. Nguyen ◽  
J. M. Pommersheim

AbstractDiffusion of cations along the polymer/metal interface controls the rate of blistering of polymer coatings on metals exposed to electrolytes. Cations are driven by both concentration and electrical potential gradients. A theoretical and experimental study was carried out on the diffusion of sodium ion along the polymer coating/steel interface under an applied potential. Mathematical models, consisting of initial and propagation stages, are derived based on a moving boundary diffusion problem. Model variables include ion diffusivity, potential gradient and distance between defects and delamination sites. Models are solved to predict ion fluxes and concentration in the blistering areas. Experimental data are analyzed to extract model parameters. Model predictions agreed well with experimental data and practical observations


Sign in / Sign up

Export Citation Format

Share Document