Determining the dynamic insulation resistance of DC cables used in photovoltaic systems under operational conditions

Author(s):  
Christos Melios ◽  
Andreas Dimitriou ◽  
Vasilios P. Androvitsaneas ◽  
Ioannis F. Gonos ◽  
Charalambos A. Charalambous
Author(s):  
I. A. Elzein ◽  
Yu. N. Petrenko

In this article an extended literature surveying review is launched on a set of comparative studies of maximum power point tracking (MPPT) techniques. Different MPPT methods are addressed with an ultimate aim of how to be maximizing the PV system output power by tracking Pmax in a set of different operational circumstances. In this paper maximum power point tracking, MPPT techniques are reviewed on basis of different parameters related to the design simplicity and/or complexity, implementation, hardware required, and other related aspects.he technology of solar systems has been booming for a while due to its ability to replace current fossil fuels like coal and gas for generation of electricity that produce air, water, and land pollution. In addition it decreased the issue of global warming and climate changes substantially due to being produced in a clean environmental manner and was proved to be an Eco-friendly resource of energy. The photovoltaic systems’ manufacturing process has been improving continuously over the last decade and photovoltaic systems have become an interesting solution. Precisely, PV systems are constituted from arrays of photovoltaic cells, choppers (mainly buck-boost or boost DC/DC converter), MPPT control systems and storage devices and/or grid connections. To improve the efficiency of such systems, various studies have been performed. The demand of PV generation systems seems to be increased for both standalone and grid-connected modes of PV systems. Therefore, an efficient maximum power point tracking (MPPT) technique is necessary to initialize the process of tracking the maximum power point MPP at all environmental conditions and then force the PV system to operate at that MPP point.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 961
Author(s):  
Gabriel Constantino de Lima ◽  
Andre Luiz Lopes Toledo ◽  
Leonidas Bourikas

The energy sector and electricity generation in particular, is responsible for a great share of the global greenhouse gas (GHG) emissions. World electricity generation is still largely based on the burning of fossil fuels. However, Brazil has already a very low electricity carbon intensity due to the country’s large hydropower capacity. In countries with low grid carbon intensities such as Brazil, the investment in photovoltaic solar systems (PVSS) even if it is cost-effective, might become challenging as any new generation competes essentially against other renewable generation and the carbon offset is not a key driver for investment anymore. This study builds further upon that case to examine if national renewable energy incentives could actually lead to an increase of global net carbon emissions from the installation of PVSS in countries with a low grid carbon intensity. The study presents a life cycle analysis (LCA) of ten photovoltaic systems representative of the different operational conditions in regions across Brazil. It was found that the average energy payback time of the studied PV plants is between 3 and 5 years of operation. This result shows the feasibility and viability of such investments in the Brazilian context. When the LCA was integrated into the analysis though, the results showed that the “local” direct emissions avoidance from two out of ten studied PV plants would not manage to offset their “global” life cycle emissions due to the 2020 projected Brazilian grid emission factor which is already low. It is important to recognize that public policies of unrestricted, unconditional stimulus to photovoltaic systems investment might not help towards reducing global net emissions when the PV systems are installed at countries with a low carbon emission electric matrix. That is also something to consider for other countries as the carbon intensity of their grids will start reducing at levels similar to Brazil’s. It is likely that in the near future, the real net carbon offset achieved by PV systems at the global level will be largely defined by the manufacture procedures and the production’s carbon intensity at the country of origin of the PV panels.


Author(s):  
David C. Joy

Personal computers (PCs) are a powerful resource in the EM Laboratory, both as a means of automating the monitoring and control of microscopes, and as a tool for quantifying the interpretation of data. Not only is a PC more versatile than a piece of dedicated data logging equipment, but it is also substantially cheaper. In this tutorial the practical principles of using a PC for these types of activities will be discussed.The PC can form the basis of a system to measure, display, record and store the many parameters which characterize the operational conditions of the EM. In this mode it is operating as a data logger. The necessary first step is to find a suitable source from which to measure each of the items of interest. It is usually possible to do this without having to make permanent corrections or modifications to the EM.


Nanoscale ◽  
2020 ◽  
Vol 12 (33) ◽  
pp. 17265-17271
Author(s):  
Seong Kyung Nam ◽  
Kiwon Kim ◽  
Ji-Hwan Kang ◽  
Jun Hyuk Moon

Luminescent solar concentrator-photovoltaic systems (LSC-PV) harvest solar light by using transparent photoluminescent plates, which is expected to be particularly useful for building-integrated PV applications.


2013 ◽  
Vol 133 (8) ◽  
pp. 845-851 ◽  
Author(s):  
Yuta Kodama ◽  
Toshiya Yoshida ◽  
Osamu Miyashita

2010 ◽  
Vol 130 (5) ◽  
pp. 491-500 ◽  
Author(s):  
Takashi Oozeki ◽  
Takumi Takashima ◽  
Kenji Otani ◽  
Yoshihiro Hishikawa ◽  
Gentaro Koshimizu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document