A reversible evolvable Boolean network architecture and methodology to overcome the heat generation problem. In molecular scale brain building

Author(s):  
H. de Garis ◽  
J. Dinerstein ◽  
R. Sriram
Author(s):  
J. T. Woodward ◽  
J. A. N. Zasadzinski

The Scanning Tunneling Microscope (STM) offers exciting new ways of imaging surfaces of biological or organic materials with resolution to the sub-molecular scale. Rigid, conductive surfaces can readily be imaged with the STM with atomic resolution. Unfortunately, organic surfaces are neither sufficiently conductive or rigid enough to be examined directly with the STM. At present, nonconductive surfaces can be examined in two ways: 1) Using the AFM, which measures the deflection of a weak spring as it is dragged across the surface, or 2) coating or replicating non-conductive surfaces with metal layers so as to make them conductive, then imaging with the STM. However, we have found that the conventional freeze-fracture technique, while extremely useful for imaging bulk organic materials with STM, must be modified considerably for optimal use in the STM.


Author(s):  
Claude Jaupart ◽  
Jean-Claude Mareschal
Keyword(s):  

2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2003 ◽  
Vol 771 ◽  
Author(s):  
Adosh Mehta ◽  
Pradeep Kumar ◽  
Jie Zheng ◽  
Robert M. Dickson ◽  
Bobby Sumpter ◽  
...  

AbstractDipole emission pattern imaging experiments on single chains of common conjugated polymers (solubilized poly phenylene vinylenes) isolated by ink-jet printing techniques have revealed surprising uniformity in transition moment orientation perpendicular to the support substrate. In addition to uniform orientation, these species show a number of striking differences in photochemical stability, polarization anisotropy,[1] and spectral signatures[2] with respect to similar (well-studied) molecules dispersed in dilute thin-films. Combined with molecular mechanics simulation, these results point to a structural picture of a folded macromolecule as a highly ordered cylindrical nanostructure whose long-axis (approximately collinear with the conjugation axis) is oriented, by an electrostatic interaction, perpendicular to the coverglass substrate. These results suggest a number of important applications in nanoscale photonics and molecular-scale optoelectronics.


Author(s):  
Viet Dung Nguyen ◽  
Claudia Cogne ◽  
Mohamed Guessasma ◽  
Emmanuel Bellenger ◽  
Christophe Marie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document