Neurosurgical treatment of glioblastomas using neurophysiological monitoring, neuronavigation, radiosurgery and fluorescence-guided surgery with 5-Aminolevulinic acid

Author(s):  
Munteanu Maria-Raluca ◽  
Poeata Ion ◽  
Eva Lucian ◽  
Iordache Alin-Constantin ◽  
Turliuc Dana-Mihaela
Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3508
Author(s):  
Rosa Sun ◽  
Hadleigh Cuthbert ◽  
Colin Watts

Gliomas are central nervous systems tumours which are diffusely infiltrative and difficult to treat. The extent of surgical resection is correlated with improved outcomes, including survival and disease-free progression. Cancerous tissue can be directly visualised intra-operatively under fluorescence by administration of 5-aminolevulinic acid to the patient. The adoption of this technique has allowed surgeons worldwide to achieve greater extents of resection, with implications for improved prognosis. However, there are practical limitations to use of 5-aminolevulinic acid. New adjuncts in the field of fluorescence-guided surgery aim to improve recognition of the interface between tumour and brain with the objective of improving resection and patient outcomes.


2018 ◽  
Vol 27 (1) ◽  
pp. 13-19
Author(s):  
Ricardo Ramina ◽  
Erasmo Barros Da Silva Júnior ◽  
Maurício Coelho Neto ◽  
Leonardo Gilmone Ruschel ◽  
Felipe Andrés Constanzo Navarrette

Introduction: In the last two decades the 5-aminolevulinic acid (5-ALA) has been utilized in primary brain lesions and metastases surgery to aid the identification of tumor limits and infiltration. Objectives: In this retrospective study, we demonstrate our experience with the first 41 cases Latin America of surgical resection of central nervous system (CNS) lesions with 5-ALA. Methods: In 41 consecutive patients, we recorded age, sex, histopathological diagnosis, intraoperative 5-ALA fluorescence tumor response, 5-ALA post-resection resection grade through magnetic resonance image (MRI) and other concomitantintra-operative techniques utilized (transoperative imaging, awake surgery, electrophysiological stimulation and monitoring). Results: Twenty seven high-grade gliomas and 4 non-glial lesions were 5-ALA fluorescence positive; 6 low-grade gliomas, 1 high-grade glioma and a hippocampal gliosis were 5-ALA fluorescence negative. In one case of a low-grade glioma, the patient developed a cardiac arrhythmia, probably not related to 5-ALA administration, but the surgery was suspended. Conclusions: 5-ALA fluorescence-guided surgery is a safe and easy technique to be used, increasing tumor total gross resection in glioma cases, proving to be an invaluable neurosurgical tool for intracranial tumor surgery. There was no serious side effect in this series. This dye should be utilized in all cases of high-grade gliomas. 


2021 ◽  
pp. 1-9
Author(s):  
Lisa I. Wadiura ◽  
David Reichert ◽  
Veronika Sperl ◽  
Alexandra Lang ◽  
Barbara Kiesel ◽  
...  

OBJECTIVE Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) is nowadays widely applied for improved resection of glioblastomas (GBMs). Initially, pretreatment with dexamethasone was considered to be essential for optimal fluorescence effect. However, recent studies reported comparably high rates of visible fluorescence in GBMs despite absence of dexamethasone pretreatment. Recently, the authors proposed fluorescence lifetime imaging (FLIM) for the quantitative analysis of 5-ALA–induced protoporphyrin IX (PpIX) accumulation. The aim of this study was thus to investigate the influence of dexamethasone on visible fluorescence and quantitative PpIX accumulation. METHODS The authors prospectively analyzed the presence of visible fluorescence during surgery in a cohort of patients with GBMs. In this study, patients received dexamethasone preoperatively only if clinically indicated. One representative tumor sample was collected from each GBM, and PpIX accumulation was analyzed ex vivo by FLIM. The visible fluorescence status and mean FLIM values were correlated with preoperative intake of dexamethasone. RESULTS In total, two subgroups with (n = 27) and without (n = 20) pretreatment with dexamethasone were analyzed. All patients showed visible fluorescence independent from preoperative dexamethasone intake. Furthermore, the authors did not find a statistically significant difference in the mean FLIM values between patients with and without dexamethasone pretreatment (p = 0.097). CONCLUSIONS In this first study to date, the authors found no significant influence of dexamethasone pretreatment on either visible 5-ALA fluorescence during GBM surgery or PpIX accumulation based on FLIM. According to these preliminary data, the authors recommend administering dexamethasone prior to fluorescence-guided surgery of GBMs only when clinically indicated.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi12-vi12
Author(s):  
Anudeep Yekula ◽  
Tiffaney Hsia ◽  
Leonora Balaj ◽  
Bob Carter

Abstract INTRODUCTION Tumor specificity of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is widely applied for fluorescence-guided surgery (FGS) in gliomas. We recently showed the feasibility of detecting tumour-specific fluorescent PpIX extracellular vesicles (EVs) derived from the plasma of glioblastoma (GBM) patients undergoing 5-ALA based fluorescence-guided surgery. Here, we further develop methods to characterize, sort and study fluorescent PpIX EVs in plasma of patients with glioma. METHODS We used imaging flow cytometry and Astrios EQ nanoFACS to characterize and sort PpIX EVs, respectively. Downstream RNA analysis utilized transcriptome sequencing analysis and droplet digital PCR (EGFRvIII mRNA). RESULTS All GBM cell lines (Gli36vIII, U87, Gli36 WT) dosed with 5-ALA demonstrated PpIX fluorescence, and released PpIX positive EVs. There was a high correlation between fluorescence in cells and the number of PpIX EVs released (r2=0.9). We sorted 100,000 PpIX EVs from Gli36vIII cells dosed with 5-ALA and detected 65 copies and 24 copies of mutant EGFRvIII mRNA and wildtype EGFR mRNA per 100,000 EVs, respectively. RNAseq analysis of the sorted PpIX EVs showed expression patterns reflective of parent cells. Furthermore, 100,000 sorted PpIX EVs from the plasma of a patient with EGFRvIII glioma yielded 22 copies of EGFRvIII mRNA while < 5 copies were detected in 1ml of plasma and healthy control plasma, demonstrating the tumor-specific nature of PpIX EVs. Finally, we performed transcriptome analysis on 250,000 PpIX EVs each from 8 patients undergoing 5-ALA based FGS. We identified several mRNAs including Gli3, STAG2, ELF3, PHLPP1 which play an important role in cancer. CONCLUSION The ability to sort and characterize tumor specific PpIX EVs following 5-ALA administration opens new avenues for liquid biopsy-based glioma diagnosis.


Neurosurgery ◽  
2013 ◽  
Vol 72 (6) ◽  
pp. 915-921 ◽  
Author(s):  
Guillermo Aldave ◽  
Sonia Tejada ◽  
Eva Pay ◽  
Miguel Marigil ◽  
Bartolomé Bejarano ◽  
...  

Abstract BACKGROUND: There is evidence in the literature supporting that fluorescent tissue signal in fluorescence-guided surgery extends farther than tissue highlighted in gadolinium in T1 sequence magnetic resonance imaging (MRI), which is the standard to quantify the extent of resection. OBJECTIVE: To study whether the presence of residual fluorescent tissue after surgery carries a different prognosis for glioblastoma (GBM) cases with complete resection confirmed by MRI. METHODS: A retrospective review in our center found 118 consecutive patients with high-grade gliomas operated on with the use of fluorescence-guided surgery with 5-aminolevulinic acid. Within that series, the 52 patients with newly diagnosed GBM and complete resection of enhancing tumor (CRET) in early MRI were selected for analysis. We studied the influence of residual fluorescence in the surgical field on overall survival and neurological complication rate. Multivariate analysis included potential relevant factors: age, Karnofsky Performance Scale, O6-methylguanine methyltransferase methylation promoter status, tumor eloquent location, preoperative tumor volume, and adjuvant therapy. RESULTS: The median overall survival was 27.0 months (confidence interval = 22.4-31.6) in patients with nonresidual fluorescence (n = 25) and 17.5 months (confidence interval = 12.5-22.5) for the group with residual fluorescence (n = 27) (P = .015). The influence of residual fluorescence was maintained in the multivariate analysis with all covariables, hazard ratio = 2.5 (P = .041). The neurological complication rate was 18.5% in patients with nonresidual fluorescence and 8% for the group with residual fluorescence (P = .267). CONCLUSION: GBM patients with CRET in early MRI and no fluorescent residual tissue had longer overall survival than patients with CRET and residual fluorescent tissue.


Neurosurgery ◽  
2015 ◽  
Vol 77 (5) ◽  
pp. 663-673 ◽  
Author(s):  
Costas G. Hadjipanayis ◽  
Georg Widhalm ◽  
Walter Stummer

Abstract The current neurosurgical goal for patients with malignant gliomas is maximal safe resection of the contrast-enhancing tumor. However, a complete resection of the contrast-enhancing tumor is achieved only in a minority of patients. One reason for this limitation is the difficulty in distinguishing viable tumor from normal adjacent brain during surgery at the tumor margin using conventional white-light microscopy. To overcome this limitation, fluorescence-guided surgery (FGS) using 5-aminolevulinic acid (5-ALA) has been introduced in the treatment of malignant gliomas. FGS permits the intraoperative visualization of malignant glioma tissue and supports the neurosurgeon with real-time guidance for differentiating tumor from normal brain that is independent of neuronavigation and brain shift. Tissue fluorescence after oral administration of 5-ALA is associated with unprecedented high sensitivity, specificity, and positive predictive values for identifying malignant glioma tumor tissue. 5-ALA-induced tumor fluorescence in diffusely infiltrating gliomas with non-significant magnetic resonance imaging contrast-enhancement permits intraoperative identification of anaplastic foci and establishment of an accurate histopathological diagnosis for proper adjuvant treatment. 5-ALA FGS has enabled surgeons to achieve a significantly higher rate of complete resections of malignant gliomas in comparison with conventional white-light resections. Consequently, 5-ALA FGS has become an indispensable surgical technique and standard of care at many neurosurgical departments around the world. We conducted an extensive literature review concerning the surgical benefit of using 5-ALA for FGS of malignant gliomas. According to the literature, there are a number of reasons for the neurosurgeon to perform 5-ALA FGS, which will be discussed in detail in the current review.


Sign in / Sign up

Export Citation Format

Share Document