ABGM(1,1): A Joint Optimization GM(1,1) Model Based on Background Values and Initial Conditions

Author(s):  
Jiwu Li ◽  
Hongwei Yang ◽  
Xin Feng ◽  
Jing Zhang
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tongfei Lao ◽  
Xiaoting Chen ◽  
Jianian Zhu

As a tool for analyzing time series, grey prediction models have been widely used in various fields of society due to their higher prediction accuracy and the advantages of small sample modeling. The basic GM (1, N) model is the most popular and important grey model, in which the first “1” stands for the “first order” and the second “N” represents the “multivariate.” The construction of the background values is not only an important step in grey modeling but also the key factor that affects the prediction accuracy of the grey prediction models. In order to further improve the prediction accuracy of the multivariate grey prediction models, this paper establishes a novel multivariate grey prediction model based on dynamic background values (abbreviated as DBGM (1, N) model) and uses the whale optimization algorithm to solve the optimal parameters of the model. The DBGM (1, N) model can adapt to different time series by changing parameters to achieve the purpose of improving prediction accuracy. It is a grey prediction model with extremely strong adaptability. Finally, four cases are used to verify the feasibility and effectiveness of the model. The results show that the proposed model significantly outperforms the other 2 multivariate grey prediction models.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
David L. Youngs ◽  
Ben Thornber

Abstract The Buoyancy-Drag model is a simple model, based on ordinary differential equations, for estimating the growth in the width of a turbulent mixing zone at an interface between fluids of different densities due to Richtmyer–Meshkov and Rayleigh–Taylor instabilities. The model is calibrated to give the required self-similar behavior for mixing in simple situations. However, the early stages of the mixing process are very dependent on the initial conditions and modifications to the Buoyancy-Drag model are then needed to obtain correct results. In a recent paper, Thornber et al. (2017, “Late-Time Growth Rate, Mixing, and Anisotropy in the Multimode Narrowband Richtmyer–Meshkov Instability: The θ-Group Collaboration,” Phys. Fluids, 29, p. 105107), a range of three-dimensional simulation techniques was used to calculate the evolution of the mixing zone integral width due to single-shock Richtmyer–Meshkov mixing from narrowband initial random perturbations. Further analysis of the results of these simulations gives greater insight into the transition from the initial linear behavior to late-time self-similar mixing and provides a way of modifying the Buoyancy-Drag model to treat the initial conditions accurately. Higher-resolution simulations are used to calculate the early time behavior more accurately and compare with a multimode model based on the impulsive linear theory. The analysis of the iLES data also gives a new method for estimating the growth exponent, θ (mixing zone width ∼ tθ), which is suitable for simulations which do not fully reach the self-similar state. The estimates of θ are consistent with the theoretical model of Elbaz and Shvarts (2018, “Modal Model Mean Field Self-Similar Solutions to the Asymptotic Evolution of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Its Dependence on the Initial Conditions,” Phys. Plasmas, 25, p. 062126).


2014 ◽  
Vol 716-717 ◽  
pp. 387-390
Author(s):  
Xiao Xiang

For the drawbacks of construction design and regulation used in our country for long time, like construction rules are far behind, and the energy consumption of the construction process is higher, the energy-saving construction design model based on multi-level features is proposed. Through calculating the energy consumption with hours as units, and quantitative judgment is made, the appropriate formulas are utilized reasonably depending on the circumstances to compute energy consumption of construction, so as to obtain the energy-saving design under the corresponding conditions. This model can be adopted to calculate rational energy consumption, and circumvent, so that ultimately achieving energy saving. At the same time, the initial conditions of construction and matters requiring attention during the construction phase are integrated and discussed, as well as issues such as the weights of design value, as a whole to consider, to minimize the error between the design and construction.


2019 ◽  
Vol 19 (11) ◽  
pp. 6552-6559 ◽  
Author(s):  
Brigitta Bodák ◽  
Giovanni Maria Maggioni ◽  
Marco Mazzotti

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhixuan Cao ◽  
Marcus Bursik ◽  
Qingyuan Yang ◽  
Abani Patra

Volcanic ash transport and dispersion (VATD) models simulate atmospheric transport of ash from a volcanic source represented by parameterized concentration of ash with height. Most VATD models represent the volcanic plume source as a simple line with a parameterized ash emission rate as a function of height, constrained only by a total mass eruption rate (MER) for a given total rise height. However, the actual vertical ash distribution in volcanic plumes varies from case to case, having complex dependencies on eruption source parameters, such as grain size, speed at the vent, vent size, buoyancy flux, and atmospheric conditions. We present here for the first time the use of a three-dimensional (3D) plume model based on conservation laws to represent the ash cloud source without any prior assumption or simplification regarding plume geometry. By eliminating assumed behavior associated with a parameterized plume geometry, the predictive skill of VATD simulations is improved. We use our recently developed volcanic plume model based on a 3D smoothed-particle hydrodynamic Lagrangian method and couple the output to a standard Lagrangian VATD model. We apply the coupled model to the Pinatubo eruption in 1991 to illustrate the effectiveness of the approach. Our investigation reveals that initial particle distribution in the vertical direction, including within the umbrella cloud, has more impact on the long-range transport of ash clouds than does the horizontal distribution. Comparison with satellite data indicates that the 3D model-based distribution of ash particles through the depth of the volcanic umbrella cloud, which is much lower than the observed maximum plume height, produces improved long-range VATD simulations. We thus show that initial conditions have a significant impact on VATD, and it is possible to obtain a better estimate of initial conditions for VATD simulations with deterministic, 3D forward modeling of the volcanic plume. Such modeling may therefore provide a path to better forecasts lessening the need for user intervention, or attempts to observe details of an eruption that are beyond the resolution of any potential satellite or ground-based technique, or a posteriori creating a history of ash emission height via inversion.


Author(s):  
Sascha Wolff ◽  
Rudibert King

An annular pulsed detonation combustor (PDC) basically consists of a number of detonation tubes which are firing in a predetermined sequence into a common downstream annular plenum. Fluctuating initial conditions and fluctuating environmental parameters strongly affect the detonation. Operating such a setup without misfiring is delicate. Misfiring of individual combustion tubes will significantly lower performance or even stop the engine. Hence, an operation of such an engine requires a misfiring detection. Here, a model-based approach is used which exploits the innovation sequence calculated by a Kalman filter. The model necessary for the Kalman filter is determined based on a modal identification technique. A surrogate, nonreacting experimental setup is considered in order to develop and test these methods.


Sign in / Sign up

Export Citation Format

Share Document